Characterization of viscoelastic properties of EPDM molding compound for door grommet component using molecular dynamics and phenomenological modeling.
Salvador Gómez-Jiménez, T. Saucedo-Anaya, V. H. Baltazar Hernandez, Ada Rebeca Contreras-Rodriguez
{"title":"Characterization of viscoelastic properties of EPDM molding compound for door grommet component using molecular dynamics and phenomenological modeling.","authors":"Salvador Gómez-Jiménez, T. Saucedo-Anaya, V. H. Baltazar Hernandez, Ada Rebeca Contreras-Rodriguez","doi":"10.1115/1.4062858","DOIUrl":null,"url":null,"abstract":"\n The automotive industry is evolving by incorporating innovative tools to improve production processes. A proper manufacturing process influences the behavior of the door grommet during its lifetime. In this paper, molecular dynamics simulations are conducted to evaluate the chemical and physical crosslinking of the EPDM rubber over a range of temperatures using a COMPASS force field. Then, once the EPDM model was equilibrated and all possible crosslinks were formed, additional simulations were performed on the model to explore its mechanical behavior. Subsequently, using the superposition principle, viscosity and curing kinetics were evaluated using phenomenological models. To, validate the results of the simulations, three injection tests of the door grommet, were performed at different temperature conditions. The results indicate that the viscosity and elastic properties increase with increasing levels of crosslink density and that the critical gel point decreases with temperature. Molecular dynamics superposition results in phenomenological models are in reasonable agreement with the kinetic and viscoelastic behavior of EPDM during and after the injection process. The results presented in this paper provide novel molecular-level findings on the crosslinking mechanisms of amorphous polymers and their influence on viscoelastic behavior, which could facilitate the design of the injection process for door grommet applications","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":"329 ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062858","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The automotive industry is evolving by incorporating innovative tools to improve production processes. A proper manufacturing process influences the behavior of the door grommet during its lifetime. In this paper, molecular dynamics simulations are conducted to evaluate the chemical and physical crosslinking of the EPDM rubber over a range of temperatures using a COMPASS force field. Then, once the EPDM model was equilibrated and all possible crosslinks were formed, additional simulations were performed on the model to explore its mechanical behavior. Subsequently, using the superposition principle, viscosity and curing kinetics were evaluated using phenomenological models. To, validate the results of the simulations, three injection tests of the door grommet, were performed at different temperature conditions. The results indicate that the viscosity and elastic properties increase with increasing levels of crosslink density and that the critical gel point decreases with temperature. Molecular dynamics superposition results in phenomenological models are in reasonable agreement with the kinetic and viscoelastic behavior of EPDM during and after the injection process. The results presented in this paper provide novel molecular-level findings on the crosslinking mechanisms of amorphous polymers and their influence on viscoelastic behavior, which could facilitate the design of the injection process for door grommet applications
期刊介绍:
Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining