{"title":"Synthesis, phase transformation and applications of CeCO3OH: A review","authors":"","doi":"10.1016/j.jre.2023.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>CeCO<sub>3</sub>OH has a unique crystal structure and excellent optical, electronic and catalytic properties, which has been widely investigated for many applications. Interestingly, ceria obtained from CeCO<sub>3</sub>OH has a morphology that is similar to that of the precursor, and the CeO<sub>2</sub><strong>-</strong>based products obtained from CeCO<sub>3</sub>OH exhibit outstanding properties, such as catalytic performances, owing to their designed morphology and oxygen vacancies (OVs). To introduce CeCO<sub>3</sub>OH into a wider range of potential researchers, we first systematically review the physico-chemical properties, synthesis, reaction and morphology tuning mechanism of CeCO<sub>3</sub>OH, and summarize the conversion behavior from CeCO<sub>3</sub>OH to ceria. Then, we thoroughly survey the applications of CeCO<sub>3</sub>OH and its conversion products. Suggestions for further investigations of CeCO<sub>3</sub>OH are also made in this review. It is hoped that the exhaustive compilation of the valuable properties and considerable potential investigations of CeCO<sub>3</sub>OH will promote further applications of CeCO<sub>3</sub>OH and CeO<sub>2</sub>-based functional materials.</p></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"42 8","pages":"Pages 1403-1420"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rare Earths","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002072123002429","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
CeCO3OH has a unique crystal structure and excellent optical, electronic and catalytic properties, which has been widely investigated for many applications. Interestingly, ceria obtained from CeCO3OH has a morphology that is similar to that of the precursor, and the CeO2-based products obtained from CeCO3OH exhibit outstanding properties, such as catalytic performances, owing to their designed morphology and oxygen vacancies (OVs). To introduce CeCO3OH into a wider range of potential researchers, we first systematically review the physico-chemical properties, synthesis, reaction and morphology tuning mechanism of CeCO3OH, and summarize the conversion behavior from CeCO3OH to ceria. Then, we thoroughly survey the applications of CeCO3OH and its conversion products. Suggestions for further investigations of CeCO3OH are also made in this review. It is hoped that the exhaustive compilation of the valuable properties and considerable potential investigations of CeCO3OH will promote further applications of CeCO3OH and CeO2-based functional materials.
期刊介绍:
The Journal of Rare Earths reports studies on the 17 rare earth elements. It is a unique English-language learned journal that publishes works on various aspects of basic theory and applied science in the field of rare earths (RE). The journal accepts original high-quality original research papers and review articles with inventive content, and complete experimental data. It represents high academic standards and new progress in the RE field. Due to the advantage of abundant RE resources of China, the research on RE develops very actively, and papers on the latest progress in this field emerge every year. It is not only an important resource in which technicians publish and obtain their latest research results on RE, but also an important way of reflecting the updated progress in RE research field.
The Journal of Rare Earths covers all research and application of RE rare earths including spectroscopy, luminescence and phosphors, rare earth catalysis, magnetism and magnetic materials, advanced rare earth materials, RE chemistry & hydrometallurgy, RE metallography & pyrometallurgy, RE new materials, RE solid state physics & solid state chemistry, rare earth applications, RE analysis & test, RE geology & ore dressing, etc.