Face recognition system with PCA-GA algorithm for smart home door security using Rasberry Pi

S. Subiyanto, Dina Priliyana, Moh. Eki Riyadani, N. Iksan, Hari Wibawanto
{"title":"Face recognition system with PCA-GA algorithm for smart home door security using Rasberry Pi","authors":"S. Subiyanto, Dina Priliyana, Moh. Eki Riyadani, N. Iksan, Hari Wibawanto","doi":"10.14710/JTSISKOM.2020.13590","DOIUrl":null,"url":null,"abstract":"Genetic algorithm (GA) can improve the classification of the face recognition process in the principal component analysis (PCA). However, the accuracy of this algorithm for the smart home security system has not been further analyzed. This paper presents the accuracy of face recognition using PCA-GA for the smart home security system on Raspberry Pi. PCA was used as the face recognition algorithm, while GA to improve the classification performance of face image search. The PCA-GA algorithm was implemented on the Raspberry Pi. If an authorized person accesses the door of the house, the relay circuit will unlock the door. The accuracy of the system was compared to other face recognition algorithms, namely LBPH-GA and PCA. The results show that PCA-GA face recognition has an accuracy of 90 %, while PCA and LBPH-GA have 80 % and 90 %, respectively.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":"65 5","pages":"210-216"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JTSISKOM.2020.13590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Genetic algorithm (GA) can improve the classification of the face recognition process in the principal component analysis (PCA). However, the accuracy of this algorithm for the smart home security system has not been further analyzed. This paper presents the accuracy of face recognition using PCA-GA for the smart home security system on Raspberry Pi. PCA was used as the face recognition algorithm, while GA to improve the classification performance of face image search. The PCA-GA algorithm was implemented on the Raspberry Pi. If an authorized person accesses the door of the house, the relay circuit will unlock the door. The accuracy of the system was compared to other face recognition algorithms, namely LBPH-GA and PCA. The results show that PCA-GA face recognition has an accuracy of 90 %, while PCA and LBPH-GA have 80 % and 90 %, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于PCA-GA算法的Rasberry Pi智能家居门安全人脸识别系统
遗传算法(GA)可以改进主成分分析(PCA)中人脸识别过程的分类。然而,该算法对于智能家居安防系统的准确性还没有得到进一步的分析。本文介绍了基于PCA-GA的树莓派智能家居安防系统人脸识别的准确性。采用主成分分析作为人脸识别算法,采用遗传算法提高人脸图像搜索的分类性能。在树莓派上实现了PCA-GA算法。如果一个授权的人进入房子的门,继电器电路将打开门。并与其他人脸识别算法(LBPH-GA和PCA)的准确率进行了比较。结果表明,PCA- ga人脸识别准确率为90%,PCA和LBPH-GA人脸识别准确率分别为80%和90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
期刊最新文献
TATOPSIS: A decision support system for selecting a major in university with a two-way approach and TOPSIS Regional clustering based on economic potential with a modified fuzzy k-prototypes algorithm for village developing target determination River water level measurement system using Sobel edge detection method Classification of beneficiaries for the rehabilitation of uninhabitable houses using the K-Nearest Neighbor algorithm Sequence-based prediction of protein-protein interaction using autocorrelation features and machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1