Regional clustering based on economic potential with a modified fuzzy k-prototypes algorithm for village developing target determination

Hermawan Prasetyo
{"title":"Regional clustering based on economic potential with a modified fuzzy k-prototypes algorithm for village developing target determination","authors":"Hermawan Prasetyo","doi":"10.14710/jtsiskom.2021.14247","DOIUrl":null,"url":null,"abstract":"The clustering algorithm can group regions based on economic potential with mixed attributes data, consisting of numeric and categorical data. This study aims to group villages according to their economic potential in determining village development targets in Demak Regency using the fuzzy k-prototypes algorithm and modified Eskin distance to measure the distance of categorical attributes. The data used are PODES2018 data and the 2019 Wilkerstat Mapping. Village clustering produces three village clusters according to their economic potential, namely low, medium, and high economic clusters. Clusters of high economic potential are located on the main transportation routes of Semarang–Kudus and Semarang–Grobogan. However, villages on the main transportation route are still included in the low economic cluster. Considering the status of the urban/rural village classification, most of these villages are included in the urban village category. The results of this clustering can be used to determine village development targets in increasing the Village Developing Index in Demak Regency.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jtsiskom.2021.14247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The clustering algorithm can group regions based on economic potential with mixed attributes data, consisting of numeric and categorical data. This study aims to group villages according to their economic potential in determining village development targets in Demak Regency using the fuzzy k-prototypes algorithm and modified Eskin distance to measure the distance of categorical attributes. The data used are PODES2018 data and the 2019 Wilkerstat Mapping. Village clustering produces three village clusters according to their economic potential, namely low, medium, and high economic clusters. Clusters of high economic potential are located on the main transportation routes of Semarang–Kudus and Semarang–Grobogan. However, villages on the main transportation route are still included in the low economic cluster. Considering the status of the urban/rural village classification, most of these villages are included in the urban village category. The results of this clustering can be used to determine village development targets in increasing the Village Developing Index in Demak Regency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于经济潜力的区域聚类与改进模糊k-原型算法确定村庄发展目标
聚类算法可以根据经济潜力对区域进行分组,并使用由数字和分类数据组成的混合属性数据。本研究旨在根据村庄的经济潜力对其进行分组,以确定Demak Regency的村庄发展目标,使用模糊k-原型算法和修正的Eskin距离来测量类别属性的距离。使用的数据是PODES2018数据和2019年Wilkerstat地图。村庄集群根据其经济潜力产生三个村庄集群,即低、中、高经济集群。具有较高经济潜力的集群位于三宝垄-库都斯和三宝垄–格罗博甘的主要交通路线上。然而,主要交通路线上的村庄仍然属于低经济集群。考虑到城市/农村村庄分类的现状,这些村庄大多被纳入城市村庄类别。该聚类结果可用于确定德马克县村庄发展指数的村庄发展目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
期刊最新文献
TATOPSIS: A decision support system for selecting a major in university with a two-way approach and TOPSIS Regional clustering based on economic potential with a modified fuzzy k-prototypes algorithm for village developing target determination River water level measurement system using Sobel edge detection method Classification of beneficiaries for the rehabilitation of uninhabitable houses using the K-Nearest Neighbor algorithm Sequence-based prediction of protein-protein interaction using autocorrelation features and machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1