The Significance of Machine Learning in the Manufacturing Sector: An ISM Approach

IF 3.6 Q2 MANAGEMENT Logistics-Basel Pub Date : 2022-10-28 DOI:10.3390/logistics6040076
Alisha Lakra, Shubhkirti Gupta, Ravi Ranjan, S. Tripathy, D. Singhal
{"title":"The Significance of Machine Learning in the Manufacturing Sector: An ISM Approach","authors":"Alisha Lakra, Shubhkirti Gupta, Ravi Ranjan, S. Tripathy, D. Singhal","doi":"10.3390/logistics6040076","DOIUrl":null,"url":null,"abstract":"Background: Our day-to-day commodities truly depend on the industrial sector, which is expanding at a rapid rate along with the growing population. The production of goods needs to be accurate and rapid. Thus, for the present research, we have incorporated machine-learning (ML) technology in the manufacturing sector (MS). Methods: Through an inclusive study, we identify 11 factors within the research background that could be seen as holding significance for machine learning in the manufacturing sector. An interpretive structural modeling (ISM) method is used, and inputs from experts are applied to establish the relationships. Results: The findings from the ISM model show the ‘order fulfillment factor as the long-term focus and the ‘market demand’ factor as the short-term focus. The results indicate the critical factors that impact the development of machine learning in the manufacturing sector. Conclusions: Our research contributes to the manufacturing sector which aims to incorporate machine learning. Using the ISM model, industries can directly point out their oddities and improve on them for better performance.","PeriodicalId":56264,"journal":{"name":"Logistics-Basel","volume":"19 4","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logistics-Basel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/logistics6040076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 2

Abstract

Background: Our day-to-day commodities truly depend on the industrial sector, which is expanding at a rapid rate along with the growing population. The production of goods needs to be accurate and rapid. Thus, for the present research, we have incorporated machine-learning (ML) technology in the manufacturing sector (MS). Methods: Through an inclusive study, we identify 11 factors within the research background that could be seen as holding significance for machine learning in the manufacturing sector. An interpretive structural modeling (ISM) method is used, and inputs from experts are applied to establish the relationships. Results: The findings from the ISM model show the ‘order fulfillment factor as the long-term focus and the ‘market demand’ factor as the short-term focus. The results indicate the critical factors that impact the development of machine learning in the manufacturing sector. Conclusions: Our research contributes to the manufacturing sector which aims to incorporate machine learning. Using the ISM model, industries can directly point out their oddities and improve on them for better performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习在制造业的意义:ISM方法
背景:我们的日常商品确实依赖于工业部门,随着人口的增长,工业部门正在快速扩张。商品的生产需要准确快速。因此,在本研究中,我们将机器学习(ML)技术纳入了制造业(MS)。方法:通过一项包容性研究,我们确定了研究背景下的11个因素,这些因素对制造业的机器学习具有重要意义。使用解释结构建模(ISM)方法,并应用专家的输入来建立关系。结果:ISM模型的结果表明,“订单履行因素”是长期关注点,“市场需求”因素是短期关注点。研究结果表明了影响制造业机器学习发展的关键因素。结论:我们的研究有助于制造业将机器学习纳入其中。使用ISM模型,行业可以直接指出它们的奇怪之处,并对其进行改进以获得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Logistics-Basel
Logistics-Basel Multiple-
CiteScore
6.60
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Current State and Future of International Logistics Networks—The Role of Digitalization and Sustainability in a Globalized World An Innovative Framework for Quality Assurance in Logistics Packaging Dynamic Capabilities and Digital Transformation in the COVID-19 Era: Implications from Driving Schools A Systematic Literature Review on the Application of Automation in Logistics Climate Justice Implications of Banning Air-Freighted Fresh Produce
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1