Assessing and benchmarking 3D city models

IF 4.3 1区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Geographical Information Science Pub Date : 2022-11-08 DOI:10.1080/13658816.2022.2140808
Binyu Lei, R. Stouffs, F. Biljecki
{"title":"Assessing and benchmarking 3D city models","authors":"Binyu Lei, R. Stouffs, F. Biljecki","doi":"10.1080/13658816.2022.2140808","DOIUrl":null,"url":null,"abstract":"Abstract 3D city models are omnipresent in urban management and simulations. However, instruments for their evaluation have been limited. Furthermore, current instances are scattered worldwide and developed independently, hampering their comparison and understanding practices. While there are developed assessment frameworks in open data, such efforts are generic and not applied to geospatial data. We establish a holistic and comprehensive four-category framework ‘3D City Index’, encompassing 47 criteria to identify key properties of 3D city models, enabling their assessment and benchmarking, and suggesting usability. We evaluate 40 authoritative 3D city models and derive quantitative and qualitative insights. The framework implementation enables a comprehensive and structured understanding of the landscape of semantic 3D geospatial data, as well as doubles as an evaluated collection of open 3D city models. For example, datasets differ substantially in their characteristics, having heterogeneous properties influenced by their different purposes. There are further applications of this first endeavour to standardise the characterisation of 3D data: monitoring developments and trends in 3D city modelling, and enabling researchers and practitioners to find the most appropriate datasets for their needs. The work is designed to measure datasets continuously and can also be applied to other instances in spatial data infrastructures.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"26 24-25","pages":"788 - 809"},"PeriodicalIF":4.3000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/13658816.2022.2140808","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 14

Abstract

Abstract 3D city models are omnipresent in urban management and simulations. However, instruments for their evaluation have been limited. Furthermore, current instances are scattered worldwide and developed independently, hampering their comparison and understanding practices. While there are developed assessment frameworks in open data, such efforts are generic and not applied to geospatial data. We establish a holistic and comprehensive four-category framework ‘3D City Index’, encompassing 47 criteria to identify key properties of 3D city models, enabling their assessment and benchmarking, and suggesting usability. We evaluate 40 authoritative 3D city models and derive quantitative and qualitative insights. The framework implementation enables a comprehensive and structured understanding of the landscape of semantic 3D geospatial data, as well as doubles as an evaluated collection of open 3D city models. For example, datasets differ substantially in their characteristics, having heterogeneous properties influenced by their different purposes. There are further applications of this first endeavour to standardise the characterisation of 3D data: monitoring developments and trends in 3D city modelling, and enabling researchers and practitioners to find the most appropriate datasets for their needs. The work is designed to measure datasets continuously and can also be applied to other instances in spatial data infrastructures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估和基准的3D城市模型
摘要三维城市模型在城市管理和模拟中无处不在。然而,对其进行评价的手段有限。此外,目前的实例分散在世界各地,而且是独立开发的,阻碍了它们的比较和理解实践。虽然在开放数据方面已经制定了评估框架,但这种努力是通用的,不适用于地理空间数据。我们建立了一个整体全面的四类框架“3D城市指数”,包括47个标准来确定3D城市模型的关键属性,使其能够进行评估和基准测试,并提出可用性建议。我们评估了40个权威的3D城市模型,并得出了定量和定性的见解。该框架的实现实现了对语义三维地理空间数据景观的全面和结构化理解,并兼作开放三维城市模型的评估集合。例如,数据集在特性上有很大差异,其异构特性受其不同目的的影响。这项首次尝试的进一步应用是标准化3D数据的特征:监测3D城市建模的发展和趋势,并使研究人员和从业者能够找到最适合他们需求的数据集。这项工作旨在持续测量数据集,也可应用于空间数据基础设施中的其他实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
7.00%
发文量
81
审稿时长
9 months
期刊介绍: International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.
期刊最新文献
GPU-accelerated parallel all-pair shortest path routing within stochastic road networks Collective flow-evolutionary patterns reveal the mesoscopic structure between snapshots of spatial network Geospatial foundation models for image analysis: evaluating and enhancing NASA-IBM Prithvi’s domain adaptability Translating street view imagery to correct perspectives to enhance bikeability and walkability studies A multi-view ensemble machine learning approach for 3D modeling using geological and geophysical data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1