Pub Date : 2023-09-05DOI: 10.1080/13658816.2023.2250838
M. Sachdeva, A. Fotheringham, Ziqi Li, Hanchen Yu
Abstract A recent addition to the suite of techniques for local statistical modeling is the implementation of the multiscale geographically weighted regression (MGWR), a multiscale extension to geographically weighted regression (GWR). Using a back-fitting algorithm, MGWR relaxes the restrictive assumption in GWR that all processes being modeled operate at the same spatial scale and allows the estimation of a unique indicator of scale, the bandwidth, for each process. However, the current MGWR framework is limited to use with continuous data making it unsuitable for modeling data that do not typically exhibit a Gaussian distribution. This study expands the application of the MGWR framework to scenarios involving discrete response outcomes (count data following a Poisson’s distribution). Use of this new MGWR Poisson regression (MGWPR) model is demonstrated with a simulated data set and then with COVID-19 case counts within New York City at the zip code level. The results from the simulated data underscore the superiority of the MGWPR model in effectively capturing spatial processes that influence count data patterns, particularly those operating across diverse spatial scales. For empirical data, the results reveal significant spatial variations in relationships between socio-ecological factors and COVID-19 cases – variations often missed by traditional ‘global’ models.
{"title":"On the local modeling of count data: multiscale geographically weighted Poisson regression","authors":"M. Sachdeva, A. Fotheringham, Ziqi Li, Hanchen Yu","doi":"10.1080/13658816.2023.2250838","DOIUrl":"https://doi.org/10.1080/13658816.2023.2250838","url":null,"abstract":"Abstract A recent addition to the suite of techniques for local statistical modeling is the implementation of the multiscale geographically weighted regression (MGWR), a multiscale extension to geographically weighted regression (GWR). Using a back-fitting algorithm, MGWR relaxes the restrictive assumption in GWR that all processes being modeled operate at the same spatial scale and allows the estimation of a unique indicator of scale, the bandwidth, for each process. However, the current MGWR framework is limited to use with continuous data making it unsuitable for modeling data that do not typically exhibit a Gaussian distribution. This study expands the application of the MGWR framework to scenarios involving discrete response outcomes (count data following a Poisson’s distribution). Use of this new MGWR Poisson regression (MGWPR) model is demonstrated with a simulated data set and then with COVID-19 case counts within New York City at the zip code level. The results from the simulated data underscore the superiority of the MGWPR model in effectively capturing spatial processes that influence count data patterns, particularly those operating across diverse spatial scales. For empirical data, the results reveal significant spatial variations in relationships between socio-ecological factors and COVID-19 cases – variations often missed by traditional ‘global’ models.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"2238 - 2261"},"PeriodicalIF":5.7,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44807777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-28DOI: 10.1080/13658816.2023.2249968
M. Deng, Kaiqi Chen, Kaiyuan Lei, Yuanfang Chen, Yan Shi
Abstract Fine-grained urban traffic data are often incomplete owing to limitations in sensor technology and economic cost. However, data-driven traffic analysis methods in intelligent transportation systems (ITSs) heavily rely on the quality of input data. Thus, accurately estimating missing traffic observations is an essential data engineering task in ITSs. The complexity of underlying node-wise correlation structures and various missing scenarios presents a significant challenge in achieving high-precision estimation. This study proposes a novel multiview neural network termed MVCV-Traffic, equipped with a cross-view learning mechanism, to improve traffic estimation. The contributions of this model can be summarized into two parts: multiview learning and cross-view fusing. For multiview learning, several specialized neural networks are adopted to fit diverse correlation structures from different views. For cross-view fusing, a new information fusion strategy merges multiview messages at both feature and output levels to enhance the learning of joint correlations. Experiments on two real-world datasets demonstrate that the proposed model significantly outperforms existing traffic speed estimation methods for different types and rates of missing data.
{"title":"MVCV-Traffic: multiview road traffic state estimation via cross-view learning","authors":"M. Deng, Kaiqi Chen, Kaiyuan Lei, Yuanfang Chen, Yan Shi","doi":"10.1080/13658816.2023.2249968","DOIUrl":"https://doi.org/10.1080/13658816.2023.2249968","url":null,"abstract":"Abstract Fine-grained urban traffic data are often incomplete owing to limitations in sensor technology and economic cost. However, data-driven traffic analysis methods in intelligent transportation systems (ITSs) heavily rely on the quality of input data. Thus, accurately estimating missing traffic observations is an essential data engineering task in ITSs. The complexity of underlying node-wise correlation structures and various missing scenarios presents a significant challenge in achieving high-precision estimation. This study proposes a novel multiview neural network termed MVCV-Traffic, equipped with a cross-view learning mechanism, to improve traffic estimation. The contributions of this model can be summarized into two parts: multiview learning and cross-view fusing. For multiview learning, several specialized neural networks are adopted to fit diverse correlation structures from different views. For cross-view fusing, a new information fusion strategy merges multiview messages at both feature and output levels to enhance the learning of joint correlations. Experiments on two real-world datasets demonstrate that the proposed model significantly outperforms existing traffic speed estimation methods for different types and rates of missing data.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"2205 - 2237"},"PeriodicalIF":5.7,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43738981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-24DOI: 10.1080/13658816.2023.2246154
Xiao-liang Zhou, R. Assunção, H. Shao, Cheng-Chia Huang, Mark V. Janikas, H. Asefaw
Abstract Multi-scale geographically weighted regression (MGWR) is among the most popular methods to analyze non-stationary spatial relationships. However, the current model calibration algorithm is computationally intensive: its runtime has a cubic growth with the sample size, while its memory use grows quadratically. We propose calibrating MGWR with gradient-based optimization. This is obtained by analytically deriving the gradient vector and the Hessian matrix of the corrected Akaike information criterion (AICc) and wrapping them with a trust-region optimization algorithm. We evaluate the model quality empirically. Our method converges to the same coefficients and produces the same inference as the current method but it has a substantial computational gain when the sample size is large. It reduces the runtime to quadratic convergence and makes the memory use linear with respect to sample size. Our new algorithm outperforms the existing alternatives and makes MGWR feasible for large spatial datasets.
{"title":"Gradient-based optimization for multi-scale geographically weighted regression","authors":"Xiao-liang Zhou, R. Assunção, H. Shao, Cheng-Chia Huang, Mark V. Janikas, H. Asefaw","doi":"10.1080/13658816.2023.2246154","DOIUrl":"https://doi.org/10.1080/13658816.2023.2246154","url":null,"abstract":"Abstract Multi-scale geographically weighted regression (MGWR) is among the most popular methods to analyze non-stationary spatial relationships. However, the current model calibration algorithm is computationally intensive: its runtime has a cubic growth with the sample size, while its memory use grows quadratically. We propose calibrating MGWR with gradient-based optimization. This is obtained by analytically deriving the gradient vector and the Hessian matrix of the corrected Akaike information criterion (AICc) and wrapping them with a trust-region optimization algorithm. We evaluate the model quality empirically. Our method converges to the same coefficients and produces the same inference as the current method but it has a substantial computational gain when the sample size is large. It reduces the runtime to quadratic convergence and makes the memory use linear with respect to sample size. Our new algorithm outperforms the existing alternatives and makes MGWR feasible for large spatial datasets.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"2101 - 2128"},"PeriodicalIF":5.7,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42101458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-23DOI: 10.1080/13658816.2023.2248502
Yaqun Fang, T. Pei, Ci Song, Jie Chen, Xi Wang, Xiao Chen, Yaxi Liu
Abstract The kriging model can accommodate various spatial supports and has been extensively applied in hydrology, meteorology, soil science, and other domains. With the expansion of applications, it is essential to extend the kriging model for new spatial support of high-dimensional data. Geographical flows can depict the movements of geographical objects and imply the underlying mobility patterns in geographical phenomena. However, due to the bias, sparsity, and uneven quality of flow data in the real world, research about flows remains hindered by the lack of complete flow data and effective flow interpolation methods. In this study, we design a kriging interpolation model for flows based on several flow-related concepts and the autocorrelation of flows. We also analyze the second-order stationarity and anisotropy in the flow spatial random field. To illustrate the effectiveness and applicability of our method, we conduct two case studies. The former case study compares several experiments of flow density interpolation using Beijing mobile signaling data and illustrates the conditions of applicable areas. The latter case study extends our model to other flow attributes, such as travel time uncertainty, using Beijing taxi origin-destination flow data. The results of these cases demonstrate the effectiveness and high accuracy of our model.
{"title":"A kriging interpolation model for geographical flows","authors":"Yaqun Fang, T. Pei, Ci Song, Jie Chen, Xi Wang, Xiao Chen, Yaxi Liu","doi":"10.1080/13658816.2023.2248502","DOIUrl":"https://doi.org/10.1080/13658816.2023.2248502","url":null,"abstract":"Abstract The kriging model can accommodate various spatial supports and has been extensively applied in hydrology, meteorology, soil science, and other domains. With the expansion of applications, it is essential to extend the kriging model for new spatial support of high-dimensional data. Geographical flows can depict the movements of geographical objects and imply the underlying mobility patterns in geographical phenomena. However, due to the bias, sparsity, and uneven quality of flow data in the real world, research about flows remains hindered by the lack of complete flow data and effective flow interpolation methods. In this study, we design a kriging interpolation model for flows based on several flow-related concepts and the autocorrelation of flows. We also analyze the second-order stationarity and anisotropy in the flow spatial random field. To illustrate the effectiveness and applicability of our method, we conduct two case studies. The former case study compares several experiments of flow density interpolation using Beijing mobile signaling data and illustrates the conditions of applicable areas. The latter case study extends our model to other flow attributes, such as travel time uncertainty, using Beijing taxi origin-destination flow data. The results of these cases demonstrate the effectiveness and high accuracy of our model.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"2150 - 2174"},"PeriodicalIF":5.7,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43034131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-17DOI: 10.1080/13658816.2023.2248215
Fang-He Zhao, Jingyi Huang, A-Xing Zhu
Abstract Spatial prediction methods are an important means of predicting the spatial variation of groundwater level change. Existing methods extract spatial or statistical relationships from samples to represent the study area for inference and require a representative sample set that is usually in large quantity and is distributed across geographic or covariate space. However, samples for groundwater are usually sparsely and unevenly distributed. In this paper, an approach based on the Third Law of Geography is proposed to make predictions by comparing the similarity between each individual sample and unmeasured site. The approach requires no specific number or distribution of samples and provides individual uncertainty measures at each location. Experiments in three different watersheds across the U.S. show that the proposed methods outperform machine learning methods when available samples do not well represent the area. The provided uncertainty measures are indicative of prediction accuracy by location. The results of this study also show that the spatial prediction based on the Third Law of Geography can also be successfully applied to dynamic variables such as groundwater level change.
{"title":"Spatial prediction of groundwater level change based on the Third Law of Geography","authors":"Fang-He Zhao, Jingyi Huang, A-Xing Zhu","doi":"10.1080/13658816.2023.2248215","DOIUrl":"https://doi.org/10.1080/13658816.2023.2248215","url":null,"abstract":"Abstract Spatial prediction methods are an important means of predicting the spatial variation of groundwater level change. Existing methods extract spatial or statistical relationships from samples to represent the study area for inference and require a representative sample set that is usually in large quantity and is distributed across geographic or covariate space. However, samples for groundwater are usually sparsely and unevenly distributed. In this paper, an approach based on the Third Law of Geography is proposed to make predictions by comparing the similarity between each individual sample and unmeasured site. The approach requires no specific number or distribution of samples and provides individual uncertainty measures at each location. Experiments in three different watersheds across the U.S. show that the proposed methods outperform machine learning methods when available samples do not well represent the area. The provided uncertainty measures are indicative of prediction accuracy by location. The results of this study also show that the spatial prediction based on the Third Law of Geography can also be successfully applied to dynamic variables such as groundwater level change.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"2129 - 2149"},"PeriodicalIF":5.7,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46083035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Parallel computing on distributed heterogeneous architectures (e.g. computing clusters with multiple CPUs and GPUs) can significantly improve the computational efficiency and scalability of complicated algorithms, but it is theoretically and technically complex. Parallel raster processing libraries reduce the development complexity of parallel raster algorithms by hiding parallel computing details; however, no existing library sufficiently utilizes distributed heterogeneous computing resources. A general-purpose raster processing library (mcRPL) combining multi-process parallelism and multi-thread parallelism is proposed to enable parallel raster processing on distributed heterogeneous architectures with multiple CPUs and GPUs. Additionally, an adaptive hardware assignment strategy is proposed to fully utilize available processors in various hardware environments. A series of task-processing strategies are adopted to aim toward maximizing the utilization of the computing capacity of involved processors. Experiments revealed that two raster algorithms parallelized using mcRPL for spatiotemporal data fusion and land-use change simulation were 170.7- and 143.2-fold faster than original serial algorithms using 8 and 16 GPUs, respectively. While hiding the details of mixed parallelism and reducing the development complexity, mcRPL provides user-friendly interfaces for the development of parallel raster algorithms to enhance computational performance and enable large-scale raster computing tasks with extensive data volumes.
{"title":"mcRPL: a general purpose parallel raster processing library on distributed heterogeneous architectures","authors":"Huan Gao, Xuantong Peng, Qingfeng Guan, Jingyi Wang, Ziqi Liu, Xue Yang, Wen Zeng","doi":"10.1080/13658816.2023.2244550","DOIUrl":"https://doi.org/10.1080/13658816.2023.2244550","url":null,"abstract":"Abstract Parallel computing on distributed heterogeneous architectures (e.g. computing clusters with multiple CPUs and GPUs) can significantly improve the computational efficiency and scalability of complicated algorithms, but it is theoretically and technically complex. Parallel raster processing libraries reduce the development complexity of parallel raster algorithms by hiding parallel computing details; however, no existing library sufficiently utilizes distributed heterogeneous computing resources. A general-purpose raster processing library (mcRPL) combining multi-process parallelism and multi-thread parallelism is proposed to enable parallel raster processing on distributed heterogeneous architectures with multiple CPUs and GPUs. Additionally, an adaptive hardware assignment strategy is proposed to fully utilize available processors in various hardware environments. A series of task-processing strategies are adopted to aim toward maximizing the utilization of the computing capacity of involved processors. Experiments revealed that two raster algorithms parallelized using mcRPL for spatiotemporal data fusion and land-use change simulation were 170.7- and 143.2-fold faster than original serial algorithms using 8 and 16 GPUs, respectively. While hiding the details of mixed parallelism and reducing the development complexity, mcRPL provides user-friendly interfaces for the development of parallel raster algorithms to enhance computational performance and enable large-scale raster computing tasks with extensive data volumes.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"2043 - 2066"},"PeriodicalIF":5.7,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45781134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-06DOI: 10.1080/13658816.2023.2231044
M. Duckham, J. Gabela, A. Kealy, R. Kyprianou, J. Legg, Bill Moran, Shakila Khan Rumi, Flora D. Salim, Yaguang Tao, M. Vasardani
Abstract Probabilistic logics combine the ability to reason about complex scenes, with a rigorous approach to uncertainty. This paper explores the construction of probabilistic spatial logics through the combination of established qualitative spatial calculi together with Markov logic networks (MLNs). Qualitative spatial calculi provide the basis for automated representation and reasoning with complex spatial scenes; MLNs provide a rigorous basis for handling uncertainty and driving probabilistic inference. Our approach focuses specifically on the combination of an uncertain knowledge base with a certain spatial reasoning rule-base. The experiments explore how uncertain knowledge propagates through certain qualitative spatial inferences, using the specific example of reasoning with cardinal directions. The results provide a template for probabilistic qualitative spatial reasoning more generally, with applications to a wide range of common scenarios for situational awareness and automated reasoning under uncertainty.
{"title":"Qualitative spatial reasoning with uncertain evidence using Markov logic networks","authors":"M. Duckham, J. Gabela, A. Kealy, R. Kyprianou, J. Legg, Bill Moran, Shakila Khan Rumi, Flora D. Salim, Yaguang Tao, M. Vasardani","doi":"10.1080/13658816.2023.2231044","DOIUrl":"https://doi.org/10.1080/13658816.2023.2231044","url":null,"abstract":"Abstract Probabilistic logics combine the ability to reason about complex scenes, with a rigorous approach to uncertainty. This paper explores the construction of probabilistic spatial logics through the combination of established qualitative spatial calculi together with Markov logic networks (MLNs). Qualitative spatial calculi provide the basis for automated representation and reasoning with complex spatial scenes; MLNs provide a rigorous basis for handling uncertainty and driving probabilistic inference. Our approach focuses specifically on the combination of an uncertain knowledge base with a certain spatial reasoning rule-base. The experiments explore how uncertain knowledge propagates through certain qualitative spatial inferences, using the specific example of reasoning with cardinal directions. The results provide a template for probabilistic qualitative spatial reasoning more generally, with applications to a wide range of common scenarios for situational awareness and automated reasoning under uncertainty.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"2067 - 2100"},"PeriodicalIF":5.7,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44282726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-27DOI: 10.1080/13658816.2023.2241144
R. Ramos, M. Scarabello, Wanderson Costa, Pedro Ribeiro de Andrade Neto, A. Soterroni, F. Ramos
Abstract Land-use and land-cover change (LULCC) models are important tools for environmental policy planning. LULCC models are frequently constrained to the generation of projections at a specific resolution. However, subsequent studies or models may require finer resolutions. In this work, a downscaling method for LULCC models is proposed that uses a mathematical programming approach to disaggregate the multiple layers of the land-use change projections while respecting a series of constraints. The method is calibrated and validated with MapBiomas data for the years 2000 and 2018 converted for the GLOBIOM-Brazil model, successfully predicting land-use at a finer resolution. Also, as proof of concept, the calibrated model is also applied for GLOBIOM-Brazil projections for 2050. This paper advances the state-of-the-art by proposing and testing a downscaling method using a mathematical programming approach with spatial effects, that operates on multi-layered land-use projections with a range of constraints while allowing flexibility on the number and type of the specific layers and constraints.
{"title":"A mathematical programming approach for downscaling multi-layered multi-constraint land-use models","authors":"R. Ramos, M. Scarabello, Wanderson Costa, Pedro Ribeiro de Andrade Neto, A. Soterroni, F. Ramos","doi":"10.1080/13658816.2023.2241144","DOIUrl":"https://doi.org/10.1080/13658816.2023.2241144","url":null,"abstract":"Abstract Land-use and land-cover change (LULCC) models are important tools for environmental policy planning. LULCC models are frequently constrained to the generation of projections at a specific resolution. However, subsequent studies or models may require finer resolutions. In this work, a downscaling method for LULCC models is proposed that uses a mathematical programming approach to disaggregate the multiple layers of the land-use change projections while respecting a series of constraints. The method is calibrated and validated with MapBiomas data for the years 2000 and 2018 converted for the GLOBIOM-Brazil model, successfully predicting land-use at a finer resolution. Also, as proof of concept, the calibrated model is also applied for GLOBIOM-Brazil projections for 2050. This paper advances the state-of-the-art by proposing and testing a downscaling method using a mathematical programming approach with spatial effects, that operates on multi-layered land-use projections with a range of constraints while allowing flexibility on the number and type of the specific layers and constraints.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"2020 - 2042"},"PeriodicalIF":5.7,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46140283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Urban area data are strategically important for public safety, urban management, and planning. Previous research has attempted to estimate the values of unsampled regular areas, while minimal attention has been paid to the values of irregular areas. To address this problem, this study proposes a hierarchical geospatial graph neural network model based on the spatial hierarchical constraints of areas. The model first characterizes spatial relationships between irregular areas at different spatial scales. Then, it aggregates information from neighboring areas with graph neural networks, and finally, it imputes missing values in fine-grained areas under hierarchical relationship constraints. To investigate the performance of the proposed model, we constructed a new dataset consisting of the urban statistical values of irregular areas in New York City. Experiments on the dataset show that the proposed model outperforms state-of-the-art baselines and exhibits robustness. The model is adaptable to numerous geographic applications, including traffic management, public safety, and public resource allocation.
{"title":"A hierarchical constraint-based graph neural network for imputing urban area data","authors":"Shengwen Li, Wanchen Yang, Suzhen Huang, Renyao Chen, Xuyang Cheng, Shunping Zhou, Junfang Gong, Haoyue Qian, Fang Fang","doi":"10.1080/13658816.2023.2239307","DOIUrl":"https://doi.org/10.1080/13658816.2023.2239307","url":null,"abstract":"Abstract Urban area data are strategically important for public safety, urban management, and planning. Previous research has attempted to estimate the values of unsampled regular areas, while minimal attention has been paid to the values of irregular areas. To address this problem, this study proposes a hierarchical geospatial graph neural network model based on the spatial hierarchical constraints of areas. The model first characterizes spatial relationships between irregular areas at different spatial scales. Then, it aggregates information from neighboring areas with graph neural networks, and finally, it imputes missing values in fine-grained areas under hierarchical relationship constraints. To investigate the performance of the proposed model, we constructed a new dataset consisting of the urban statistical values of irregular areas in New York City. Experiments on the dataset show that the proposed model outperforms state-of-the-art baselines and exhibits robustness. The model is adaptable to numerous geographic applications, including traffic management, public safety, and public resource allocation.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"1998 - 2019"},"PeriodicalIF":5.7,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49370465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Existing traffic monitoring approaches cannot completely cover all road segments in real-time, leading to massive amounts of missing traffic data, which limits the implementation of intelligent transportation systems. Most existing methods lack deep mining of the unique spatiotemporal characteristics of traffic flows, resulting in difficulty in application to urban traffic with complex topologies and variable states. In this paper, we propose a novel Spatio-Temporal constrained Low-Rank Tensor Completion (ST-LRTC) method, which adopts a manifold embedding approach to depict the local geometric structure of spatiotemporal domains. Specifically, under the low-rank assumption, the method introduces temporal constraints based on the continuity and periodicity of traffic flow and a spatial constraint matrix reflecting the traffic flow transmission mechanism. We embed low-dimensional spatiotemporal constraint matrices into the low-rank tensor completion solving process to fully utilize the global features and local spatiotemporal characteristics of the traffic tensor. Experiments were performed using traffic data from Xi’an, China, and the results indicated that ST-LRTC outperformed state-of-the-art methods under various missing rates and patterns. Thorough experiments have demonstrated that the incorporation of spatiotemporal analysis can enhance the adaptability of the tensor completion model to complex urban scenarios, which guarantees better monitoring, diagnosis, and optimization of urban traffic states.
{"title":"Toward urban traffic scenarios and more: a spatio-temporal analysis empowered low-rank tensor completion method for data imputation","authors":"Zilong Zhao, Luliang Tang, Mengyuan Fang, Xue Yang, Chaokui Li, Qingquan Li","doi":"10.1080/13658816.2023.2234434","DOIUrl":"https://doi.org/10.1080/13658816.2023.2234434","url":null,"abstract":"Abstract Existing traffic monitoring approaches cannot completely cover all road segments in real-time, leading to massive amounts of missing traffic data, which limits the implementation of intelligent transportation systems. Most existing methods lack deep mining of the unique spatiotemporal characteristics of traffic flows, resulting in difficulty in application to urban traffic with complex topologies and variable states. In this paper, we propose a novel Spatio-Temporal constrained Low-Rank Tensor Completion (ST-LRTC) method, which adopts a manifold embedding approach to depict the local geometric structure of spatiotemporal domains. Specifically, under the low-rank assumption, the method introduces temporal constraints based on the continuity and periodicity of traffic flow and a spatial constraint matrix reflecting the traffic flow transmission mechanism. We embed low-dimensional spatiotemporal constraint matrices into the low-rank tensor completion solving process to fully utilize the global features and local spatiotemporal characteristics of the traffic tensor. Experiments were performed using traffic data from Xi’an, China, and the results indicated that ST-LRTC outperformed state-of-the-art methods under various missing rates and patterns. Thorough experiments have demonstrated that the incorporation of spatiotemporal analysis can enhance the adaptability of the tensor completion model to complex urban scenarios, which guarantees better monitoring, diagnosis, and optimization of urban traffic states.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"1936 - 1969"},"PeriodicalIF":5.7,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48696307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}