Influence of seasonally varying sea-ice concentration and subsurface ocean heat on sea-ice thickness and sea-ice seasonality for a ‘warm-shelf’ region in Antarctica

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Journal of Glaciology Pub Date : 2023-06-29 DOI:10.1017/jog.2023.36
B. Saenz, D. McKee, S. Doney, D. Martinson, S. Stammerjohn
{"title":"Influence of seasonally varying sea-ice concentration and subsurface ocean heat on sea-ice thickness and sea-ice seasonality for a ‘warm-shelf’ region in Antarctica","authors":"B. Saenz, D. McKee, S. Doney, D. Martinson, S. Stammerjohn","doi":"10.1017/jog.2023.36","DOIUrl":null,"url":null,"abstract":"\n Processes driving changes in sea-ice seasonality and sea-ice thickness were explored for a ‘warm-shelf’ region along the West Antarctic Peninsula using vertically coupled sea-ice-ocean thermodynamic simulations, with and without assimilated satellite sea-ice observations and moored ocean temperature observations. Simulations with assimilated sea-ice observations permitted investigation of surface [thermodynamic and dynamic (e.g., wind-driven)] processes affecting sea-ice thickness and seasonality. Assimilation of quasi-weekly variability in the depth and temperature of the deep warm pycnocline permitted examination of subsurface processes affecting sea-ice. Simulations using assimilated sea-ice observations (and implied motion) always produced greater surface heat fluxes and overall thinner sea ice. Assimilating seasonal and quasi-weekly variability in the depth and temperature of the pycnocline modified the start of the sea-ice season by −23 to +1 d, and also modified the sea ice thickness/seasonality to be thinner/shorter or thicker/longer at sub-seasonal and seasonal timescales, highlighting a mechanism where a shoaling pycnocline enhanced upward deep-water heat fluxes as transient surface-induced turbulence had a greater effect on a reduced mixed layer volume. The observed interplay of surface, subsurface, and sea-ice modulation of ocean-atmosphere heat transfer underscores the importance of representing the interaction between sea-ice concentration and upper ocean variability in climate projections.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaciology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/jog.2023.36","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Processes driving changes in sea-ice seasonality and sea-ice thickness were explored for a ‘warm-shelf’ region along the West Antarctic Peninsula using vertically coupled sea-ice-ocean thermodynamic simulations, with and without assimilated satellite sea-ice observations and moored ocean temperature observations. Simulations with assimilated sea-ice observations permitted investigation of surface [thermodynamic and dynamic (e.g., wind-driven)] processes affecting sea-ice thickness and seasonality. Assimilation of quasi-weekly variability in the depth and temperature of the deep warm pycnocline permitted examination of subsurface processes affecting sea-ice. Simulations using assimilated sea-ice observations (and implied motion) always produced greater surface heat fluxes and overall thinner sea ice. Assimilating seasonal and quasi-weekly variability in the depth and temperature of the pycnocline modified the start of the sea-ice season by −23 to +1 d, and also modified the sea ice thickness/seasonality to be thinner/shorter or thicker/longer at sub-seasonal and seasonal timescales, highlighting a mechanism where a shoaling pycnocline enhanced upward deep-water heat fluxes as transient surface-induced turbulence had a greater effect on a reduced mixed layer volume. The observed interplay of surface, subsurface, and sea-ice modulation of ocean-atmosphere heat transfer underscores the importance of representing the interaction between sea-ice concentration and upper ocean variability in climate projections.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
季节性变化的海冰浓度和海底热对南极洲“暖架”地区海冰厚度和海冰季节性的影响
使用垂直耦合的海冰-海洋热力学模拟,在有和没有同化卫星海冰观测和系泊海洋温度观测的情况下,探索了南极半岛西部“温暖大陆架”地区驱动海冰季节性和海冰厚度变化的过程。利用同化海冰观测进行模拟,可以研究影响海冰厚度和季节性的表面[热力学和动力学(如风力驱动)]过程。通过同化深部温暖的比重跃层的深度和温度的准周变化,可以检查影响海冰的地下过程。使用同化海冰观测(和隐含运动)的模拟总是产生更大的表面热通量和更薄的海冰。在亚季节性和季节性时间尺度上,同化固冰层深度和温度的季节性和准周性变化使海冰季节的开始时间缩短了−23至+1天,还使海冰厚度/季节性变薄/变短或变厚/变长,强调了一种机制,即变浅的比重跃层增强了向上的深水热通量,因为瞬态表面诱导的湍流对减少的混合层体积有更大的影响。观测到的海洋-大气热传递的表面、地下和海冰调节的相互作用强调了在气候预测中代表海冰浓度和上层海洋可变性之间的相互作用的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Glaciology
Journal of Glaciology 地学-地球科学综合
CiteScore
5.80
自引率
14.70%
发文量
101
审稿时长
6 months
期刊介绍: Journal of Glaciology publishes original scientific articles and letters in any aspect of glaciology- the study of ice. Studies of natural, artificial, and extraterrestrial ice and snow, as well as interactions between ice, snow and the atmospheric, oceanic and subglacial environment are all eligible. They may be based on field work, remote sensing, laboratory investigations, theoretical analysis or numerical modelling, or may report on newly developed glaciological instruments. Subjects covered recently in the Journal have included palaeoclimatology and the chemistry of the atmosphere as revealed in ice cores; theoretical and applied physics and chemistry of ice; the dynamics of glaciers and ice sheets, and changes in their extent and mass under climatic forcing; glacier energy balances at all scales; glacial landforms, and glaciers as geomorphic agents; snow science in all its aspects; ice as a host for surface and subglacial ecosystems; sea ice, icebergs and lake ice; and avalanche dynamics and other glacial hazards to human activity. Studies of permafrost and of ice in the Earth’s atmosphere are also within the domain of the Journal, as are interdisciplinary applications to engineering, biological, and social sciences, and studies in the history of glaciology.
期刊最新文献
Rift propagation signals the last act of the Thwaites Eastern Ice Shelf despite low basal melt rates Implications of high-resolution velocity and strain rate observations for modelling of Greenlandic tidewater glaciers Exploring canyons beneath Devon Ice Cap for sub-glacial drainage using radar and thermodynamic modeling Mechanical properties of pressure-frozen ice under triaxial compressive stress Retreat of the Greenland Ice Sheet leads to divergent patterns of reconfiguration at its freshwater and tidewater margins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1