Precipitation irregularity and solar radiation play a role in determining short-season soybean yield

IF 1 4区 农林科学 Q3 AGRONOMY Canadian Journal of Plant Science Pub Date : 2022-11-30 DOI:10.1139/cjps-2022-0104
E. Cober, M. Morrison
{"title":"Precipitation irregularity and solar radiation play a role in determining short-season soybean yield","authors":"E. Cober, M. Morrison","doi":"10.1139/cjps-2022-0104","DOIUrl":null,"url":null,"abstract":"Abstract Climate change, resulting from increased atmospheric CO2, will affect temperature and precipitation amount and regularity. Changes in solar radiation have been observed in the recent past. Precipitation irregularity is a measure of rainfall distribution during a growing season (calculated as the standard error of the slope from regression of cumulative precipitation on day of the growing season). We investigated whether precipitation irregularity and solar radiation contributed to soybean yield. Fourteen short-season cultivars, released from 1930 to 1992, were grown from 1993 to 2019 at Ottawa, Canada. Stepwise multiple linear regression was used to investigate the contribution to seed yield of precipitation irregularity and solar radiation, and also previously modeled parameters genetic improvement, annual [CO2], and cumulative precipitation and average minimum temperature during the vegetative, flowering and podding, and seed filling growth stages. While solar radiation and precipitation irregularity did not trend over the years of our study and precipitation irregularity was not related to growing season precipitation, both were significant factors in our model, accounting for 2.5% and 6.5%, respectively, of the seed yield variability. Precipitation during all three stages were similar as they each accounted for 4%–7% of seed yield variability. We observed contrasting temperature effects where higher minimum temperature during vegetative and seed filling reduced yield, while during flowering and podding increased yield. Estimated yield improvement due to elevated [CO2] was 7.8 kg ha−1 ppm−1 and to genetic improvement over time was 7.1 kg ha−1 year−1. Over the extremes of our study we found that precipitation irregularity could cause up to a 30% yield reduction.","PeriodicalId":9530,"journal":{"name":"Canadian Journal of Plant Science","volume":" 38","pages":"93 - 100"},"PeriodicalIF":1.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjps-2022-0104","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Climate change, resulting from increased atmospheric CO2, will affect temperature and precipitation amount and regularity. Changes in solar radiation have been observed in the recent past. Precipitation irregularity is a measure of rainfall distribution during a growing season (calculated as the standard error of the slope from regression of cumulative precipitation on day of the growing season). We investigated whether precipitation irregularity and solar radiation contributed to soybean yield. Fourteen short-season cultivars, released from 1930 to 1992, were grown from 1993 to 2019 at Ottawa, Canada. Stepwise multiple linear regression was used to investigate the contribution to seed yield of precipitation irregularity and solar radiation, and also previously modeled parameters genetic improvement, annual [CO2], and cumulative precipitation and average minimum temperature during the vegetative, flowering and podding, and seed filling growth stages. While solar radiation and precipitation irregularity did not trend over the years of our study and precipitation irregularity was not related to growing season precipitation, both were significant factors in our model, accounting for 2.5% and 6.5%, respectively, of the seed yield variability. Precipitation during all three stages were similar as they each accounted for 4%–7% of seed yield variability. We observed contrasting temperature effects where higher minimum temperature during vegetative and seed filling reduced yield, while during flowering and podding increased yield. Estimated yield improvement due to elevated [CO2] was 7.8 kg ha−1 ppm−1 and to genetic improvement over time was 7.1 kg ha−1 year−1. Over the extremes of our study we found that precipitation irregularity could cause up to a 30% yield reduction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
降水不规则性和太阳辐射对短季大豆产量的影响
摘要气候变化是由大气CO2增加引起的,会影响气温和降水的数量和规律性。在最近的过去已经观测到太阳辐射的变化。降水不规则性是一个生长季节降雨分布的度量(用生长季节当天累积降水回归斜率的标准误差计算)。我们研究了降水不均匀性和太阳辐射对大豆产量的影响。从1930年到1992年释放的14个短季品种,从1993年到2019年在加拿大渥太华种植。利用逐步多元线性回归分析了降水不均匀性和太阳辐射对种子产量的贡献,以及遗传改良、年[CO2]、营养生长、开花结荚和灌浆阶段的累积降水量和平均最低气温对种子产量的贡献。虽然太阳辐射和降水不均匀性在我们研究的年份中没有变化趋势,降水不均匀性与生长季降水无关,但在我们的模型中,两者都是显著因素,分别占种子产量变异的2.5%和6.5%。这三个阶段的降水相似,它们分别占种子产量变异的4%-7%。我们观察到不同的温度效应,较高的最低温度在营养和种子灌浆期间会降低产量,而在开花和结荚期间则会提高产量。据估计,由于[CO2]升高导致的产量提高为7.8公斤公顷−1 ppm−1,而随着时间的推移,遗传改善的产量提高为7.1公斤公顷−1年−1。在我们研究的极端情况下,我们发现降水不规律可能导致产量减少30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
8.30%
发文量
91
审稿时长
1 months
期刊介绍: Published since 1957, the Canadian Journal of Plant Science is a bimonthly journal that contains new research on all aspects of plant science relevant to continental climate agriculture, including plant production and management (grain, forage, industrial, and alternative crops), horticulture (fruit, vegetable, ornamental, greenhouse, and alternative crops), and pest management (entomology, plant pathology, and weed science). Cross-disciplinary research in the application of technology, plant breeding, genetics, physiology, biotechnology, microbiology, soil management, economics, meteorology, post-harvest biology, and plant production systems is also published. Research that makes a significant contribution to the advancement of knowledge of crop, horticulture, and weed sciences (e.g., drought or stress resistance), but not directly applicable to the environmental regions of Canadian agriculture, may also be considered. The Journal also publishes reviews, letters to the editor, the abstracts of technical papers presented at the meetings of the sponsoring societies, and occasionally conference proceedings.
期刊最新文献
An intellectual gap in root research on major crops of the Canadian Prairies Seeding rate and sulfur drive field pea yields in the Maritime region of Canada Alfalfa (Medicago sativa L.) quality is improved from tractor traffic implemented during harvest Evaluation of sequential mesotrione application rates and sequential tolpyralate and mesotrione applications for narrow-leaved goldenrod management in lowbush blueberry The potato vine crusher: a new tool for harvest weed seed control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1