Qualitative and quantitative interdependence of mechanical properties of industrially extruded AA6063 alloy on process parameters and profile characteristics
A. K. Abdul Jawwad, A. Al-Bashir, Mohammad Saleem, Bassam Hasanain
{"title":"Qualitative and quantitative interdependence of mechanical properties of industrially extruded AA6063 alloy on process parameters and profile characteristics","authors":"A. K. Abdul Jawwad, A. Al-Bashir, Mohammad Saleem, Bassam Hasanain","doi":"10.1108/mmms-06-2022-0111","DOIUrl":null,"url":null,"abstract":"PurposeThis study aims to investigate and model interrelationships between process parameters, geometrical profile characteristics and mechanical properties of industrially extruded aluminum alloys.Design/methodology/approachStatistical design of experiments (DOE) was applied to investigate and model the effects of eight factors including extrusion ratio, stem speed, billet-preheat temperature, number of die cavities, quenching media (water/air), time and temperature of artificial aging treatment and profile nominal thickness on four mechanical properties (yield strength, ultimate tensile strength, percent elongation and hardness). Experiments were carried out at an actual extrusion plant using 8-in. diameter billets on an extrusion press with 2,200 ton capacity.FindingsMain factors and factor interactions controlling mechanical properties were identified and discussed qualitatively. Quantitative models with high prediction accuracy (in excess of 95%) were also obtained and discussed.Practical implicationsThe obtained results are believed to be of great importance to researchers and industrial practitioners in the aluminum extrusion industry.Originality/valueAll practical and relevant parameters have been used to model all important mechanical properties in a collective manner in one study and within actual industrial setup. This is in contrast to all previous studies where either a partial set of parameters and/or mechanical properties are discussed and mostly under limited laboratory setup.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multidiscipline Modeling in Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/mmms-06-2022-0111","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeThis study aims to investigate and model interrelationships between process parameters, geometrical profile characteristics and mechanical properties of industrially extruded aluminum alloys.Design/methodology/approachStatistical design of experiments (DOE) was applied to investigate and model the effects of eight factors including extrusion ratio, stem speed, billet-preheat temperature, number of die cavities, quenching media (water/air), time and temperature of artificial aging treatment and profile nominal thickness on four mechanical properties (yield strength, ultimate tensile strength, percent elongation and hardness). Experiments were carried out at an actual extrusion plant using 8-in. diameter billets on an extrusion press with 2,200 ton capacity.FindingsMain factors and factor interactions controlling mechanical properties were identified and discussed qualitatively. Quantitative models with high prediction accuracy (in excess of 95%) were also obtained and discussed.Practical implicationsThe obtained results are believed to be of great importance to researchers and industrial practitioners in the aluminum extrusion industry.Originality/valueAll practical and relevant parameters have been used to model all important mechanical properties in a collective manner in one study and within actual industrial setup. This is in contrast to all previous studies where either a partial set of parameters and/or mechanical properties are discussed and mostly under limited laboratory setup.