首页 > 最新文献

Multidiscipline Modeling in Materials and Structures最新文献

英文 中文
Feature-rich electronic properties of three-dimensional ternary compound: Li7P3S11 三维三元化合物的丰富电子特性:Li7P3S11
IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-01-12 DOI: 10.1108/mmms-08-2023-0258
Hsin-Yi Liu, Jhao-Ying Wu
PurposeThe theoretical findings serve as a foundation for further research into understanding sulfide-based solid-state electrolytes, ultimately advancing the progress of all-solid-state batteries.Design/methodology/approachThe electronic properties of Li7P3S11 are thoroughly explored through first-principles calculations.FindingsThis investigation encompasses the intricate atom-dominated valence and conduction bands, spatial charge density distribution and the breakdown of atom and orbital contributions to van Hove singularities. Additionally, the compound’s wide and discrete energy spectra reflect the substantial variations in bond lengths and its highly anisotropic geometric structure. The complex and nonuniform chemical environment indicates the presence of intricate hopping integrals.Originality/valueThis study provides valuable insights into the critical multiorbital hybridizations occurring in the Li-S and P-S chemical bonds. To validate the theoretical predictions, experimental techniques can be employed. By combining theoretical predictions with experimental data, a comprehensive understanding of the geometric and electronic characteristics of Li7P3S11 can be achieved.
通过第一性原理计算,对 Li7P3S11 的电子特性进行了深入探讨。研究结果这项研究涵盖了以原子为主的错综复杂的价带和导带、空间电荷密度分布以及原子和轨道对范霍夫奇点贡献的细分。此外,该化合物宽而离散的能谱反映了键长的巨大变化及其高度各向异性的几何结构。复杂而不均匀的化学环境表明存在错综复杂的跳变积分。这项研究为了解锂-S 和 P-S 化学键中发生的关键多轨道杂化提供了宝贵的见解。为了验证理论预测,可以采用实验技术。通过将理论预测与实验数据相结合,可以全面了解 Li7P3S11 的几何和电子特性。
{"title":"Feature-rich electronic properties of three-dimensional ternary compound: Li7P3S11","authors":"Hsin-Yi Liu, Jhao-Ying Wu","doi":"10.1108/mmms-08-2023-0258","DOIUrl":"https://doi.org/10.1108/mmms-08-2023-0258","url":null,"abstract":"PurposeThe theoretical findings serve as a foundation for further research into understanding sulfide-based solid-state electrolytes, ultimately advancing the progress of all-solid-state batteries.Design/methodology/approachThe electronic properties of Li7P3S11 are thoroughly explored through first-principles calculations.FindingsThis investigation encompasses the intricate atom-dominated valence and conduction bands, spatial charge density distribution and the breakdown of atom and orbital contributions to van Hove singularities. Additionally, the compound’s wide and discrete energy spectra reflect the substantial variations in bond lengths and its highly anisotropic geometric structure. The complex and nonuniform chemical environment indicates the presence of intricate hopping integrals.Originality/valueThis study provides valuable insights into the critical multiorbital hybridizations occurring in the Li-S and P-S chemical bonds. To validate the theoretical predictions, experimental techniques can be employed. By combining theoretical predictions with experimental data, a comprehensive understanding of the geometric and electronic characteristics of Li7P3S11 can be achieved.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":"5 11","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139437602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of width-to-depth and effective length-to-depth ratio on shear strength of reinforced concrete slender beams without shear reinforcement: comparative analysis 宽度深度比和有效长度深度比对无抗剪加固钢筋混凝土细长梁抗剪强度的影响:对比分析
IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-01-05 DOI: 10.1108/mmms-07-2023-0236
Seyfe Nigussie Adamu, T. W. Aure, T. A. Mohammed
PurposeFrom the factors that affect shear strength of reinforced concrete (RC) beams, the study examines the effect of controversial parameters, width-to-depth (b/d) and effective length-to-depth (leff/d) ratio on shear strength of RC slender beams.Design/methodology/approachThe researchers utilized a database of 676 experimental test results from ACI-DAfStb database, Conducted regression analysis to examine relationship between b/d and leff/d ratios and shear strength, compare and analyze sensitivity to changes in b/d and leff/d ratios for the selected 12 shear models for RC beams.FindingsIncreasing b/d ratio enhanced shear strength until b/d ˜ 3, but further increases had limited impact and increasing leff/d ratio resulted in decreased shear strength. From comparative analysis, the models provided by various design standards were found to be safe, with EC-2 and JSCE models being conservative. From considered research models, Campione and Arslan models were conservative, while Kim and White model were observed to be unsafe. Sensitivity analysis indicated ACI318-19, JSCE, CEB-FIP-90 and Arslan models were sensitive to changes in b/d and leff/d ratios. National code models generally captured shear strength characteristics well. Certain models suggested a constant/decreasing b/d effect despite observed shear strength enhancement. Most models indicated improved shear strength with an increasing leff/d ratio, contrary to experimental findings while TS500 and Hwang models aligned with experimental results.Research limitations/implicationsThe study's limitations include the dependence on the available database, which may not encompass all possible experimental scenarios. Further research should aim to expand the database and investigate additional parameters that may influence shear strength in RC beams.Practical implicationsThe findings of this study have practical implications for the design and analysis of RC beams by suggesting that the width-to-depth and length-to-depth ratios should be carefully considered to optimize shear strength. The identified models can assist engineers in selecting appropriate shear strength prediction models based on specific design scenarios.Social implicationsThe study contributes to the advancement of knowledge in the field of reinforced concrete beam design, which has implications for the safety and reliability of structural systems. By understanding the factors influencing shear strength, engineers can design more efficient and robust structures, ensuring the safety of buildings and infrastructure.Originality/valueThis study provides valuable insights into the influence of the width-to-depth and effective length-to-depth ratios on shear strength in reinforced concrete beams. It contributes to the understanding of these factors and their impact on shear strength, addressing the lack of consensus among researchers. The comparative analysis of shear models and the sensitivity analyses add value by identifying the models
目的从影响钢筋混凝土(RC)梁抗剪强度的因素出发,本研究探讨了有争议的参数、宽度深度比(b/d)和有效长度深度比(leff/d)对 RC 细长梁抗剪强度的影响。研究人员利用 ACI-DAfStb 数据库中包含 676 项实验测试结果的数据库,进行回归分析以研究 b/d 和 leff/d 比与剪切强度之间的关系,并比较和分析所选 12 个 RC 梁剪切模型对 b/d 和 leff/d 比变化的敏感性。研究结果增加 b/d 比可提高剪切强度,直到 b/d ˜ 3,但进一步增加影响有限,增加 leff/d 比导致剪切强度下降。通过比较分析发现,各种设计标准提供的模型都是安全的,其中 EC-2 和 JSCE 模型较为保守。从考虑的研究模型来看,Campione 和 Arslan 模型比较保守,而 Kim 和 White 模型则不安全。敏感性分析表明 ACI318-19、JSCE、CEB-FIP-90 和 Arslan 模型对 b/d 和 leff/d 比率的变化比较敏感。国家规范模型一般都能很好地捕捉剪切强度特征。某些模型表明,尽管观察到剪切强度有所提高,但 b/d 的影响却在不断减小。大多数模型表明,随着 leff/d 比率的增加,剪切强度也会提高,这与实验结果相反,而 TS500 和 Hwang 模型则与实验结果一致。实际意义本研究的发现对 RC 梁的设计和分析具有实际意义,建议应仔细考虑宽度-深度比和长度-深度比,以优化剪切强度。所确定的模型可帮助工程师根据具体设计方案选择合适的剪切强度预测模型。 社会影响该研究有助于提高钢筋混凝土梁设计领域的知识水平,对结构系统的安全性和可靠性具有重要意义。通过了解剪切强度的影响因素,工程师可以设计出更高效、更坚固的结构,从而确保建筑物和基础设施的安全。原创性/价值这项研究为了解钢筋混凝土梁的宽度深度比和有效长度深度比对剪切强度的影响提供了宝贵的见解。它有助于理解这些因素及其对剪切强度的影响,解决了研究人员之间缺乏共识的问题。剪切模型的比较分析和敏感性分析通过确定更符合实验观察结果的模型而增加了价值。该研究强调了建立考虑到这些因素的精确模型的必要性,并强调了进一步研究以完善和开发改进型预测模型的重要性。
{"title":"Influence of width-to-depth and effective length-to-depth ratio on shear strength of reinforced concrete slender beams without shear reinforcement: comparative analysis","authors":"Seyfe Nigussie Adamu, T. W. Aure, T. A. Mohammed","doi":"10.1108/mmms-07-2023-0236","DOIUrl":"https://doi.org/10.1108/mmms-07-2023-0236","url":null,"abstract":"PurposeFrom the factors that affect shear strength of reinforced concrete (RC) beams, the study examines the effect of controversial parameters, width-to-depth (b/d) and effective length-to-depth (leff/d) ratio on shear strength of RC slender beams.Design/methodology/approachThe researchers utilized a database of 676 experimental test results from ACI-DAfStb database, Conducted regression analysis to examine relationship between b/d and leff/d ratios and shear strength, compare and analyze sensitivity to changes in b/d and leff/d ratios for the selected 12 shear models for RC beams.FindingsIncreasing b/d ratio enhanced shear strength until b/d ˜ 3, but further increases had limited impact and increasing leff/d ratio resulted in decreased shear strength. From comparative analysis, the models provided by various design standards were found to be safe, with EC-2 and JSCE models being conservative. From considered research models, Campione and Arslan models were conservative, while Kim and White model were observed to be unsafe. Sensitivity analysis indicated ACI318-19, JSCE, CEB-FIP-90 and Arslan models were sensitive to changes in b/d and leff/d ratios. National code models generally captured shear strength characteristics well. Certain models suggested a constant/decreasing b/d effect despite observed shear strength enhancement. Most models indicated improved shear strength with an increasing leff/d ratio, contrary to experimental findings while TS500 and Hwang models aligned with experimental results.Research limitations/implicationsThe study's limitations include the dependence on the available database, which may not encompass all possible experimental scenarios. Further research should aim to expand the database and investigate additional parameters that may influence shear strength in RC beams.Practical implicationsThe findings of this study have practical implications for the design and analysis of RC beams by suggesting that the width-to-depth and length-to-depth ratios should be carefully considered to optimize shear strength. The identified models can assist engineers in selecting appropriate shear strength prediction models based on specific design scenarios.Social implicationsThe study contributes to the advancement of knowledge in the field of reinforced concrete beam design, which has implications for the safety and reliability of structural systems. By understanding the factors influencing shear strength, engineers can design more efficient and robust structures, ensuring the safety of buildings and infrastructure.Originality/valueThis study provides valuable insights into the influence of the width-to-depth and effective length-to-depth ratios on shear strength in reinforced concrete beams. It contributes to the understanding of these factors and their impact on shear strength, addressing the lack of consensus among researchers. The comparative analysis of shear models and the sensitivity analyses add value by identifying the models","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":"54 11","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139382196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing surface roughness in soft pneumatic gripper fabricated via FDM: experimental investigation using Taguchi method 优化通过 FDM 制造的软气动抓手的表面粗糙度:使用田口方法进行实验研究
IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-01-04 DOI: 10.1108/mmms-09-2023-0313
Muhammet Uludag, O. Ulkir
Purpose In this study, experimental studies were carried out using different process parameters of the soft pneumatic gripper (SPG) fabricated by the fused deposition modeling method. In the experimental studies, the surface quality of the gripper was examined by determining four different levels and factors. The experiment was designed to estimate the surface roughness of the SPG.Design/methodology/approach The methodology consists of an experimental phase in which the SPG is fabricated and the surface roughness is measured. Thermoplastic polyurethane (TPU) flex filament material was used in the fabrication of SPG. The control factors used in the Taguchi L16 vertical array experimental design and their level values were determined. Analysis of variance (ANOVA) was performed to observe the effect of printing parameters on the surface quality. Finally, regression analysis was applied to mathematically model the surface roughness values obtained from the experimental measurements.Findings Based on the Taguchi signal-to-noise ratio and ANOVA, layer height is the most influential parameter for surface roughness. The best surface quality value was obtained with a surface roughness value of 18.752 µm using the combination of 100 µm layer height, 2 mm wall thickness, 200 °C nozzle temperature and 120 mm/s printing speed. The developed model predicted the surface roughness of SPG with 95% confidence intervals.Originality/value It is essential to examine the surface quality of parts fabricated in additive manufacturing using different variables. In the literature, surface roughness has been examined using different factors and levels. However, the surface roughness of a soft gripper fabricated with TPU material has not been examined previously. The surface quality of parts fabricated using flexible materials is very important.
目的 本研究采用不同的工艺参数,对熔融沉积建模法制造的软气动机械手(SPG)进行了实验研究。在实验研究中,通过确定四个不同的水平和因素,对机械手的表面质量进行了检验。该实验旨在估算 SPG 的表面粗糙度。设计/方法/途径 该方法包括一个实验阶段,在该阶段制作 SPG 并测量其表面粗糙度。热塑性聚氨酯(TPU)柔性长丝材料用于制造 SPG。确定了田口 L16 垂直阵列实验设计中使用的控制因子及其水平值。为观察印刷参数对表面质量的影响,进行了方差分析(ANOVA)。根据田口信噪比和方差分析,层高是对表面粗糙度影响最大的参数。在 100 µm 层高、2 mm 壁厚、200 °C 喷嘴温度和 120 mm/s 印刷速度的组合下,获得了最佳的表面质量值,表面粗糙度值为 18.752 µm。所开发的模型以 95% 的置信区间预测了 SPG 的表面粗糙度。 原创性/价值 使用不同的变量来检测增材制造部件的表面质量至关重要。在文献中,使用不同的因素和水平对表面粗糙度进行了研究。然而,使用热塑性聚氨酯材料制造的软抓手的表面粗糙度此前尚未进行过研究。使用柔性材料制造的零件的表面质量非常重要。
{"title":"Optimizing surface roughness in soft pneumatic gripper fabricated via FDM: experimental investigation using Taguchi method","authors":"Muhammet Uludag, O. Ulkir","doi":"10.1108/mmms-09-2023-0313","DOIUrl":"https://doi.org/10.1108/mmms-09-2023-0313","url":null,"abstract":"Purpose In this study, experimental studies were carried out using different process parameters of the soft pneumatic gripper (SPG) fabricated by the fused deposition modeling method. In the experimental studies, the surface quality of the gripper was examined by determining four different levels and factors. The experiment was designed to estimate the surface roughness of the SPG.Design/methodology/approach The methodology consists of an experimental phase in which the SPG is fabricated and the surface roughness is measured. Thermoplastic polyurethane (TPU) flex filament material was used in the fabrication of SPG. The control factors used in the Taguchi L16 vertical array experimental design and their level values were determined. Analysis of variance (ANOVA) was performed to observe the effect of printing parameters on the surface quality. Finally, regression analysis was applied to mathematically model the surface roughness values obtained from the experimental measurements.Findings Based on the Taguchi signal-to-noise ratio and ANOVA, layer height is the most influential parameter for surface roughness. The best surface quality value was obtained with a surface roughness value of 18.752 µm using the combination of 100 µm layer height, 2 mm wall thickness, 200 °C nozzle temperature and 120 mm/s printing speed. The developed model predicted the surface roughness of SPG with 95% confidence intervals.Originality/value It is essential to examine the surface quality of parts fabricated in additive manufacturing using different variables. In the literature, surface roughness has been examined using different factors and levels. However, the surface roughness of a soft gripper fabricated with TPU material has not been examined previously. The surface quality of parts fabricated using flexible materials is very important.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":"7 12","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139386772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A numerical study on thermal deformation of through silicon via with electroplating defect 带有电镀缺陷的硅通孔热变形数值研究
IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-01-02 DOI: 10.1108/mmms-04-2023-0141
Chongbin Hou, Yang Qiu, Xingyan Zhao, Shaonan Zheng, Yuan Dong, Qize Zhong, Ting Hu
PurposeBy investigating the thermal-mechanical interaction between the through silicon via (TSV) and the Cu pad, this study aimed to determine the effect of electroplating defects on the upper surface protrusion and internal stress distribution of the TSV at various temperatures and to provide guidelines for the positioning of TSVs and the optimization of the electroplating process.Design/methodology/approachA simplified model that consisted of a TSV (100 µm in diameter and 300 µm in height), a covering Cu pad (2 µm thick) and an internal drop-like electroplating defect (which had various dimensions and locations) was developed. The surface overall deformation and stress distribution of these models under various thermal conditions were analyzed and compared.FindingsThe Cu pad could barely suppress the upper surface protrusion of the TSV if the temperature was below 250 ?. Interfacial delamination started at the collar of the TSV at about 250 ? and became increasingly pronounced at higher temperatures. The electroplating defect constantly experienced the highest level of strain and stress during the temperature increase, despite its geometry or location. But as its radius expanded or its distance to the upper surface increased, the overall deformation of the upper surface and the stress concentration at the collar of the TSV showed a downward trend.Originality/valuePrevious studies have not examined the influence of the electroplating void on the thermal behavior of the TSV. However, with the proposed methodology, the strain and stress distribution of the TSV under different conditions in terms of temperature, dimension and location of the electroplating void were thoroughly investigated, which might be beneficial to the positioning of TSVs and the optimization of the electroplating process.
目的 通过研究硅通孔(TSV)和铜垫之间的热机械相互作用,本研究旨在确定电镀缺陷在不同温度下对 TSV 上表面突起和内应力分布的影响,并为 TSV 的定位和电镀工艺的优化提供指导。设计/方法/途径建立了一个由 TSV(直径 100 微米,高 300 微米)、覆盖铜垫(2 微米厚)和内部滴状电镀缺陷(具有不同的尺寸和位置)组成的简化模型。分析和比较了这些模型在各种热条件下的表面整体变形和应力分布。大约在 250°C 时,TSV 颈部开始出现界面分层,温度越高,分层越明显。尽管电镀缺陷的几何形状或位置不同,但它在温度升高过程中始终承受着最高水平的应变和应力。但随着其半径的扩大或与上表面距离的增加,上表面的整体变形和 TSV 套圈处的应力集中呈下降趋势。然而,本文提出的方法深入研究了 TSV 在温度、尺寸和电镀空隙位置等不同条件下的应变和应力分布,这可能有利于 TSV 的定位和电镀工艺的优化。
{"title":"A numerical study on thermal deformation of through silicon via with electroplating defect","authors":"Chongbin Hou, Yang Qiu, Xingyan Zhao, Shaonan Zheng, Yuan Dong, Qize Zhong, Ting Hu","doi":"10.1108/mmms-04-2023-0141","DOIUrl":"https://doi.org/10.1108/mmms-04-2023-0141","url":null,"abstract":"PurposeBy investigating the thermal-mechanical interaction between the through silicon via (TSV) and the Cu pad, this study aimed to determine the effect of electroplating defects on the upper surface protrusion and internal stress distribution of the TSV at various temperatures and to provide guidelines for the positioning of TSVs and the optimization of the electroplating process.Design/methodology/approachA simplified model that consisted of a TSV (100 µm in diameter and 300 µm in height), a covering Cu pad (2 µm thick) and an internal drop-like electroplating defect (which had various dimensions and locations) was developed. The surface overall deformation and stress distribution of these models under various thermal conditions were analyzed and compared.FindingsThe Cu pad could barely suppress the upper surface protrusion of the TSV if the temperature was below 250 ?. Interfacial delamination started at the collar of the TSV at about 250 ? and became increasingly pronounced at higher temperatures. The electroplating defect constantly experienced the highest level of strain and stress during the temperature increase, despite its geometry or location. But as its radius expanded or its distance to the upper surface increased, the overall deformation of the upper surface and the stress concentration at the collar of the TSV showed a downward trend.Originality/valuePrevious studies have not examined the influence of the electroplating void on the thermal behavior of the TSV. However, with the proposed methodology, the strain and stress distribution of the TSV under different conditions in terms of temperature, dimension and location of the electroplating void were thoroughly investigated, which might be beneficial to the positioning of TSVs and the optimization of the electroplating process.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":"1 7","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139124685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rheological model of cement-based material slurry with different water-cement ratio and temperature 不同水灰比和温度下水泥基材料浆体的流变模型
IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-01-02 DOI: 10.1108/mmms-05-2023-0181
Hongjing Dong, Xi Chen, Guangying Yang, Dandan He, Yingchun Dai, Pengfei He
PurposeThe purpose of this paper is to obtain a constitutive model of cement-based material in the rheological stage, which owns the different water-cement ratio (w/c) and temperature and have a significant impact on the workability of concrete materials.Design/methodology/approachIt is introduced a modified Arrhenius equation into the Herschel–Bulkley model, which is widely applied in rheological analysis and constructed an ordinary differential equation (ODE) of w/c from the Navier–Stokes equation. By solving the ODE, an approximate constitutive relation of cement-based materials included w/c and temperature is derived. Compared with the experimental results, the present model is validated.FindingsThe shear stress and shear rate curves with different w/c and temperature are simulated by the present method, and the present model can be applied to analyze the changes of apparent viscosity in cement-based material slurry as the w/c and temperature varying.Originality/valueThis work gives a mathematical model, which can effectively approximate the shear stress–shear rate relation with different w/c and temperature in the rheological stage of cement-based material.
本文的目的是获得水泥基材料在流变阶段的构成模型,该模型包含不同的水灰比(w/c)和温度,对混凝土材料的工作性有显著影响。通过求解该 ODE,得出了包含 w/c 和温度的水泥基材料近似构成关系。结论本方法模拟了不同 w/c 和温度下的剪切应力和剪切速率曲线,本模型可用于分析水泥基材料浆体中表观粘度随 w/c 和温度变化的变化情况。
{"title":"Rheological model of cement-based material slurry with different water-cement ratio and temperature","authors":"Hongjing Dong, Xi Chen, Guangying Yang, Dandan He, Yingchun Dai, Pengfei He","doi":"10.1108/mmms-05-2023-0181","DOIUrl":"https://doi.org/10.1108/mmms-05-2023-0181","url":null,"abstract":"PurposeThe purpose of this paper is to obtain a constitutive model of cement-based material in the rheological stage, which owns the different water-cement ratio (w/c) and temperature and have a significant impact on the workability of concrete materials.Design/methodology/approachIt is introduced a modified Arrhenius equation into the Herschel–Bulkley model, which is widely applied in rheological analysis and constructed an ordinary differential equation (ODE) of w/c from the Navier–Stokes equation. By solving the ODE, an approximate constitutive relation of cement-based materials included w/c and temperature is derived. Compared with the experimental results, the present model is validated.FindingsThe shear stress and shear rate curves with different w/c and temperature are simulated by the present method, and the present model can be applied to analyze the changes of apparent viscosity in cement-based material slurry as the w/c and temperature varying.Originality/valueThis work gives a mathematical model, which can effectively approximate the shear stress–shear rate relation with different w/c and temperature in the rheological stage of cement-based material.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":"3 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139124674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drop cushioning dynamic effects of corrugated cardboard with effective anisotropic constitutive model 采用有效各向异性构成模型的瓦楞纸板跌落缓冲动态效应
IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-12-22 DOI: 10.1108/mmms-07-2023-0246
Huifeng Xi, Xiangbo Shu, Manjie Chen, Huanliang Zhang, Shi-qing Huang, Heng Xiao
PurposeThe primary objective of this study is characterizing the anisotropic mechanical properties of corrugated cardboard and simultaneously simulating its drop cushioning dynamic effects under various drop conditions.Design/methodology/approachStatic and dynamic tests were conducted on corrugated cardboard to obtain adequate experimental data in different directions. An effective anisotropic constitutive model is introduced by developing the honeycomb materials model in ANSYS LS-Dyna, and an effective approach is established toward effectively determining the material parameters from the test data obtained. The model is validated by comparing simulation results with experimental data from five drop conditions, including bottom drop, front drop, side drop, 30° side drop and edge drop. Additionally, simulations are conducted to study the cushioning performance of the packaging by dropping the corrugated cardboard at different heights.FindingsThe study establishes a fast and effective approach to simulating the drop cushioning performance of corrugated cardboard under various drop conditions, which demonstrates good agreement with experimental data.Originality/valueThis approach is of value for packaging protection and provides guidance for stacking of packaging during transportation.
目的本研究的主要目的是确定瓦楞纸板各向异性机械特性的特征,同时模拟其在各种跌落条件下的跌落缓冲动态效应。通过在 ANSYS LS-Dyna 中开发蜂窝材料模型,引入了一个有效的各向异性构成模型,并建立了一个有效的方法,以便从获得的测试数据中有效确定材料参数。通过将模拟结果与五种跌落条件(包括底部跌落、正面跌落、侧面跌落、30°侧面跌落和边缘跌落)的实验数据进行比较,对模型进行了验证。研究结果该研究建立了一种快速有效的方法来模拟瓦楞纸板在各种跌落条件下的跌落缓冲性能,结果与实验数据吻合良好。
{"title":"Drop cushioning dynamic effects of corrugated cardboard with effective anisotropic constitutive model","authors":"Huifeng Xi, Xiangbo Shu, Manjie Chen, Huanliang Zhang, Shi-qing Huang, Heng Xiao","doi":"10.1108/mmms-07-2023-0246","DOIUrl":"https://doi.org/10.1108/mmms-07-2023-0246","url":null,"abstract":"PurposeThe primary objective of this study is characterizing the anisotropic mechanical properties of corrugated cardboard and simultaneously simulating its drop cushioning dynamic effects under various drop conditions.Design/methodology/approachStatic and dynamic tests were conducted on corrugated cardboard to obtain adequate experimental data in different directions. An effective anisotropic constitutive model is introduced by developing the honeycomb materials model in ANSYS LS-Dyna, and an effective approach is established toward effectively determining the material parameters from the test data obtained. The model is validated by comparing simulation results with experimental data from five drop conditions, including bottom drop, front drop, side drop, 30° side drop and edge drop. Additionally, simulations are conducted to study the cushioning performance of the packaging by dropping the corrugated cardboard at different heights.FindingsThe study establishes a fast and effective approach to simulating the drop cushioning performance of corrugated cardboard under various drop conditions, which demonstrates good agreement with experimental data.Originality/valueThis approach is of value for packaging protection and provides guidance for stacking of packaging during transportation.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":"24 10","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138947405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization design of a two-stage multidirectional vibration isolation system for large airborne equipment 大型机载设备双级多向隔振系统的优化设计
IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-12-14 DOI: 10.1108/mmms-06-2023-0198
Hongyan Zhu, Xiaochong Wu, Pengzhen Lv, Yuansheng Wang, Huagang Lin, Wei Liu, Zhufeng Yue
Purpose Improvement and optimization design of a two-stage vibration isolation system proposed in this paper are conducted to ensure the device of electronic work effective.Design/methodology/approach The proposed two-stage vibration isolation system of airborne equipment is optimized and parameterized based on multi-objective genetic algorithm.Findings The results show that compared with initial two-stage vibration isolation system, the angular vibration of the two-stage vibration isolation system becomes 3.55 × 10-4 rad, which decreases by 89%. The linear isolation effect is improved by at least 67.7%.Originality/value The optimized two-stage vibration isolation system effectively improves the vibration reduction effect, the resonance peak is obviously improved and the reliability of the mounting bracket and the shock absorber is highly improved, which provides an analysis method for two-stage airborne equipment isolation design under complex dynamic environment.
目的 对本文提出的两级隔振系统进行改进和优化设计,以确保电子工作装置的有效工作。设计/方法/途径 基于多目标遗传算法对提出的机载设备两级隔振系统进行优化和参数化。原创性/价值 优化后的两级隔振系统有效提高了减振效果,共振峰值明显改善,安装支架和减震器的可靠性大幅提高,为复杂动态环境下的机载设备两级隔振设计提供了一种分析方法。
{"title":"Optimization design of a two-stage multidirectional vibration isolation system for large airborne equipment","authors":"Hongyan Zhu, Xiaochong Wu, Pengzhen Lv, Yuansheng Wang, Huagang Lin, Wei Liu, Zhufeng Yue","doi":"10.1108/mmms-06-2023-0198","DOIUrl":"https://doi.org/10.1108/mmms-06-2023-0198","url":null,"abstract":"Purpose Improvement and optimization design of a two-stage vibration isolation system proposed in this paper are conducted to ensure the device of electronic work effective.Design/methodology/approach The proposed two-stage vibration isolation system of airborne equipment is optimized and parameterized based on multi-objective genetic algorithm.Findings The results show that compared with initial two-stage vibration isolation system, the angular vibration of the two-stage vibration isolation system becomes 3.55 × 10-4 rad, which decreases by 89%. The linear isolation effect is improved by at least 67.7%.Originality/value The optimized two-stage vibration isolation system effectively improves the vibration reduction effect, the resonance peak is obviously improved and the reliability of the mounting bracket and the shock absorber is highly improved, which provides an analysis method for two-stage airborne equipment isolation design under complex dynamic environment.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":"48 6","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138972521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of research progress and development trend of digital image correlation 数字图像相关性研究进展与发展趋势综述
IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-11-28 DOI: 10.1108/mmms-07-2023-0242
Xindang He, Run Zhou, Zheyuan Liu, Suliang Yang, Ke Chen, Lei Li
PurposeThe purpose of this paper is to provide a comprehensive review of a non-contact full-field optical measurement technique known as digital image correlation (DIC).Design/methodology/approachThe approach of this review paper is to introduce the research pertaining to DIC. It comprehensively covers crucial facets including its principles, historical development, core challenges, current research status and practical applications. Additionally, it delves into unresolved issues and outlines future research objectives.FindingsThe findings of this review encompass essential aspects of DIC, including core issues like the subpixel registration algorithm, camera calibration, measurement of surface deformation in 3D complex structures and applications in ultra-high-temperature settings. Additionally, the review presents the prevailing strategies for addressing these challenges, the most recent advancements in DIC applications across quasi-static, dynamic, ultra-high-temperature, large-scale and micro-scale engineering domains, along with key directions for future research endeavors.Originality/valueThis review holds a substantial value as it furnishes a comprehensive and in-depth introduction to DIC, while also spotlighting its prospective applications.
本文旨在全面综述一种称为数字图像相关(DIC)的非接触式全场光学测量技术。设计/方法/途径本文的综述方法是介绍与 DIC 相关的研究。它全面涵盖了其原理、历史发展、核心挑战、研究现状和实际应用等重要方面。研究结果本综述的研究结果涵盖了 DIC 的基本方面,包括子像素配准算法、相机校准、三维复杂结构中表面变形的测量以及在超高温环境中的应用等核心问题。此外,这篇综述还介绍了应对这些挑战的现行策略,DIC 在准静态、动态、超高温、大规模和微尺度工程领域应用的最新进展,以及未来研究工作的主要方向。原创性/价值这篇综述具有重要价值,因为它全面深入地介绍了 DIC,同时还重点介绍了其应用前景。
{"title":"Review of research progress and development trend of digital image correlation","authors":"Xindang He, Run Zhou, Zheyuan Liu, Suliang Yang, Ke Chen, Lei Li","doi":"10.1108/mmms-07-2023-0242","DOIUrl":"https://doi.org/10.1108/mmms-07-2023-0242","url":null,"abstract":"PurposeThe purpose of this paper is to provide a comprehensive review of a non-contact full-field optical measurement technique known as digital image correlation (DIC).Design/methodology/approachThe approach of this review paper is to introduce the research pertaining to DIC. It comprehensively covers crucial facets including its principles, historical development, core challenges, current research status and practical applications. Additionally, it delves into unresolved issues and outlines future research objectives.FindingsThe findings of this review encompass essential aspects of DIC, including core issues like the subpixel registration algorithm, camera calibration, measurement of surface deformation in 3D complex structures and applications in ultra-high-temperature settings. Additionally, the review presents the prevailing strategies for addressing these challenges, the most recent advancements in DIC applications across quasi-static, dynamic, ultra-high-temperature, large-scale and micro-scale engineering domains, along with key directions for future research endeavors.Originality/valueThis review holds a substantial value as it furnishes a comprehensive and in-depth introduction to DIC, while also spotlighting its prospective applications.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":"24 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139221775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-objective optimization to specify optimal selective laser melting process parameters for SS316 L powder 通过多目标优化确定 SS316 L 粉末的最佳选择性激光熔化工艺参数
IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-11-20 DOI: 10.1108/mmms-06-2023-0213
Reddy K. Prasanth Kumar, Nageswara Rao Boggarapu, S.V.S. Narayana Murty
PurposeThis paper adopts a modified Taguchi approach to develop empirical relationships to the performance characteristics (output responses) in terms of process variables and demonstrated their validity through comparison of test data. The method suggests a few tests as per the orthogonal array and provides complete information for all combinations of levels and process variables. This method also provides the estimated range of output responses so that the scatter in the repeated tests can be assessed prior to the tests.Design/methodology/approachIn order to obtain defect-free products meeting the required specifications, researchers have conducted extensive experiments using powder bed fusion (PBF) process measuring the performance indicators (namely, relative density, surface roughness and hardness) to specify a set of printing parameters (namely, laser power, scanning speed and hatch spacing). A simple and reliable multi-objective optimization method is considered in this paper for specifying a set of optimal process parameters with SS316 L powder. It was reported that test samples printed even with optimal set of input variables revealed irregular shaped, microscopic porosities and improper melt pool formation.FindingsFinally, based on detailed analysis, it is concluded that it is impossible to express the performance indicators, explicitly in terms of equivalent energy density (E_0ˆ*), which is a combination of multiple sets of selective laser melting (SLM) process parameters, with different performance indicators. Empirical relations for the performance indicators are developed in terms of SLM process parameters. Test data are within/close to the expected range.Practical implicationsBased on extensive analysis of the SS316 L data using modified Taguchi approach, the optimized process parameters are laser power = 298 W, scanning speed = 900 mm/s and hatch distance = 0.075 mm, for which the results of surface roughness = 2.77 Ra, relative density = 99.24%, hardness = 334 Hv and equivalent energy density is 4.062. The estimated data for the same are surface roughness is 3.733 Ra, relative density is 99.926%, hardness is 213.64 Hv and equivalent energy density is 3.677.Originality/valueEven though equivalent energy density represents the energy input to the process, the findings of this paper conclude that energy density should no longer be considered as a dependent process parameter, as it provides multiple results for the specified energy density. This aspect has been successfully demonstrated in this paper using test data.
目的 本文采用改进的田口方法,从过程变量的角度建立性能特征(输出响应)的经验关系,并通过测试数据的比较证明其有效性。该方法根据正交阵列提出了一些测试建议,并为所有水平和过程变量的组合提供了完整的信息。该方法还提供了输出响应的估计范围,以便在测试前评估重复测试中的散点。为了获得符合所需规格的无缺陷产品,研究人员使用粉末床融合(PBF)工艺进行了大量实验,测量性能指标(即相对密度、表面粗糙度和硬度),以指定一组印刷参数(即激光功率、扫描速度和舱口间距)。本文考虑采用一种简单可靠的多目标优化方法,为 SS316 L 粉末指定一组最佳工艺参数。研究结果最后,根据详细分析得出结论,无法明确地用等效能量密度 (E_0ˆ*) 表示性能指标,等效能量密度是多组选择性激光熔化 (SLM) 工艺参数的组合,具有不同的性能指标。根据 SLM 工艺参数为性能指标建立了经验关系。实际意义基于使用改良田口方法对 SS316 L 数据的广泛分析,优化的工艺参数为激光功率 = 298 W、扫描速度 = 900 mm/s、舱口距离 = 0.075 mm,其结果为表面粗糙度 = 2.77 Ra、相对密度 = 99.24%、硬度 = 334 Hv、等效能量密度为 4.062。原创性/价值尽管等效能量密度代表了工艺中的能量输入,但本文的研究结果认为,能量密度不应再被视为一个依赖性工艺参数,因为它能为指定的能量密度提供多种结果。本文利用测试数据成功证明了这一点。
{"title":"Multi-objective optimization to specify optimal selective laser melting process parameters for SS316 L powder","authors":"Reddy K. Prasanth Kumar, Nageswara Rao Boggarapu, S.V.S. Narayana Murty","doi":"10.1108/mmms-06-2023-0213","DOIUrl":"https://doi.org/10.1108/mmms-06-2023-0213","url":null,"abstract":"PurposeThis paper adopts a modified Taguchi approach to develop empirical relationships to the performance characteristics (output responses) in terms of process variables and demonstrated their validity through comparison of test data. The method suggests a few tests as per the orthogonal array and provides complete information for all combinations of levels and process variables. This method also provides the estimated range of output responses so that the scatter in the repeated tests can be assessed prior to the tests.Design/methodology/approachIn order to obtain defect-free products meeting the required specifications, researchers have conducted extensive experiments using powder bed fusion (PBF) process measuring the performance indicators (namely, relative density, surface roughness and hardness) to specify a set of printing parameters (namely, laser power, scanning speed and hatch spacing). A simple and reliable multi-objective optimization method is considered in this paper for specifying a set of optimal process parameters with SS316 L powder. It was reported that test samples printed even with optimal set of input variables revealed irregular shaped, microscopic porosities and improper melt pool formation.FindingsFinally, based on detailed analysis, it is concluded that it is impossible to express the performance indicators, explicitly in terms of equivalent energy density (E_0ˆ*), which is a combination of multiple sets of selective laser melting (SLM) process parameters, with different performance indicators. Empirical relations for the performance indicators are developed in terms of SLM process parameters. Test data are within/close to the expected range.Practical implicationsBased on extensive analysis of the SS316 L data using modified Taguchi approach, the optimized process parameters are laser power = 298 W, scanning speed = 900 mm/s and hatch distance = 0.075 mm, for which the results of surface roughness = 2.77 Ra, relative density = 99.24%, hardness = 334 Hv and equivalent energy density is 4.062. The estimated data for the same are surface roughness is 3.733 Ra, relative density is 99.926%, hardness is 213.64 Hv and equivalent energy density is 3.677.Originality/valueEven though equivalent energy density represents the energy input to the process, the findings of this paper conclude that energy density should no longer be considered as a dependent process parameter, as it provides multiple results for the specified energy density. This aspect has been successfully demonstrated in this paper using test data.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":"1 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139258217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entropic behavior in bidirectional flow of CeO2-ZnO/water hybrid nanofluid with prescribed surface temperature/heat flux aspects 给定表面温度/热流面的CeO2-ZnO/水混合纳米流体双向流动的熵行为
4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-11-14 DOI: 10.1108/mmms-07-2023-0245
Muhammad Faisal, Iftikhar Ahmad, Abdur Rashid
Purpose The present study aims to encompass the bidirectional magnetized flowing of a hybrid-nanofluid over an unsteady stretching device with the inclusion of thermal radiation and entropy generation. Brick-shaped nanoparticles (zinc-oxide and ceria) are suspended in water, serving as the base-fluid to observe the performance of the hybrid mixture. The Maxwell thermal conductivity relation is employed to link the thermophysical attributes of the hybrid mixture with the host liquid. Additionally, a heat source/sink term is incorporated in the energy balance to enhance the impact of the investigation. Both prescribed-surface-temperature (PST) and prescribed-heat-flux (PHF) conditions are applied to inspect the thermal performance of the hybrid nanofluid. Design/methodology/approach The transport equations in Cartesian configuration are transformed into ordinary differential equations (ODEs), and an efficient method, namely the Keller-Box method (KBM), is utilized to solve the transformed system. Postprocessing is conducted to visually represent the velocity profile, thermal distribution, skin-friction coefficients, Bejan number, Nusselt number and entropy generation function against the variations of the involved parameters. Findings It is observed that more entropy is generated due to the increases in temperature difference and radiation parameters. The Bejan number initially declines but then improves with higher estimations of unsteadiness and Hartmann number. Overall, the thermal performance of the system is developed for the PST scenario than the PHF scenario for different estimations of the involved constraints. Originality/value To the best of the authors' knowledge, no investigation has been reported yet that explains the bidirectional flow of a CeO2-ZnO/water hybrid nanofluid with the combined effects of prescribed thermal aspects (PST and PHF) and entropy generation.
目的研究含热辐射和熵产的混合纳米流体在非定常拉伸装置上的双向磁化流动。砖状纳米颗粒(氧化锌和二氧化铈)悬浮在水中,作为基液,观察混合材料的性能。采用麦克斯韦导热系数关系将混合混合物的热物理性质与主体液体联系起来。此外,热源/汇项被纳入能量平衡,以增强调查的影响。采用规定表面温度(PST)和规定热流密度(PHF)条件考察了混合纳米流体的热性能。设计/方法/方法将笛卡尔型输运方程转化为常微分方程,并利用Keller-Box法(KBM)求解转化后的系统。通过后处理直观地表示速度分布、热分布、表面摩擦系数、Bejan数、Nusselt数和熵生成函数对相关参数的变化。发现随着温差和辐射参数的增大,产生的熵增大。Bejan数最初下降,但随后随着不稳定性和Hartmann数的较高估计而改善。总的来说,对于所涉及的约束条件的不同估计,系统的热性能是针对PST情景而不是PHF情景开发的。原创性/价值据作者所知,目前还没有研究报告解释了CeO2-ZnO/水混合纳米流体在规定的热方面(PST和PHF)和熵产生的综合作用下的双向流动。
{"title":"Entropic behavior in bidirectional flow of CeO<sub>2</sub>-ZnO/water hybrid nanofluid with prescribed surface temperature/heat flux aspects","authors":"Muhammad Faisal, Iftikhar Ahmad, Abdur Rashid","doi":"10.1108/mmms-07-2023-0245","DOIUrl":"https://doi.org/10.1108/mmms-07-2023-0245","url":null,"abstract":"Purpose The present study aims to encompass the bidirectional magnetized flowing of a hybrid-nanofluid over an unsteady stretching device with the inclusion of thermal radiation and entropy generation. Brick-shaped nanoparticles (zinc-oxide and ceria) are suspended in water, serving as the base-fluid to observe the performance of the hybrid mixture. The Maxwell thermal conductivity relation is employed to link the thermophysical attributes of the hybrid mixture with the host liquid. Additionally, a heat source/sink term is incorporated in the energy balance to enhance the impact of the investigation. Both prescribed-surface-temperature (PST) and prescribed-heat-flux (PHF) conditions are applied to inspect the thermal performance of the hybrid nanofluid. Design/methodology/approach The transport equations in Cartesian configuration are transformed into ordinary differential equations (ODEs), and an efficient method, namely the Keller-Box method (KBM), is utilized to solve the transformed system. Postprocessing is conducted to visually represent the velocity profile, thermal distribution, skin-friction coefficients, Bejan number, Nusselt number and entropy generation function against the variations of the involved parameters. Findings It is observed that more entropy is generated due to the increases in temperature difference and radiation parameters. The Bejan number initially declines but then improves with higher estimations of unsteadiness and Hartmann number. Overall, the thermal performance of the system is developed for the PST scenario than the PHF scenario for different estimations of the involved constraints. Originality/value To the best of the authors' knowledge, no investigation has been reported yet that explains the bidirectional flow of a CeO2-ZnO/water hybrid nanofluid with the combined effects of prescribed thermal aspects (PST and PHF) and entropy generation.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":"2 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136228889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Multidiscipline Modeling in Materials and Structures
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1