Mechanical characterization of randomly oriented short Sansevieria Trifasciata natural fibre composites

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-07-04 DOI:10.1515/ipp-2023-4377
Fantin Irudaya Raj, Appadurai M, Lurthu Pushparaj, Chithambara Thanu
{"title":"Mechanical characterization of randomly oriented short Sansevieria Trifasciata natural fibre composites","authors":"Fantin Irudaya Raj, Appadurai M, Lurthu Pushparaj, Chithambara Thanu","doi":"10.1515/ipp-2023-4377","DOIUrl":null,"url":null,"abstract":"Abstract The present work investigates the mechanical characteristics of randomly oriented short Sansevieria Trifasciata Fibre Polyester (STFP) composites. The STFP composites are fabricated using compression moulding methods with varying fibre weight percentages (5 %–50 %) and fibre lengths (5 mm–50 mm). It has been observed that the impact, flexural, and tensile strength of STFPs improve as the length of the fibre increases, up to a maximum of 40 mm. After that, these properties start to decrease as the length of the fibre further increases. Further, the analysis revealed that STFPs exhibited an increase in properties when the fibre weight percentage was less than 40 %, followed by a decrease in properties as the fibre percentage increased beyond that point. The impact strength of STFP is around 8.2 J/cm2. Similarly, the STFP has a flexural modulus and strength of about 3.4 GPa and 82.6 MPa, respectively. Lastly, the tensile strength of STFP is around 78.26 MPa, the elongation at break is between 6.25 % and 9.36 %, and the Young’s modulus is 11.8 GPa. The matrix and fibre interaction were examined by Scanning Electron Microscopy (SEM). Furthermore, Thermogravimetric (TGA) and Differential Scanning Calorimeter (DSC) analyses are carried out. From these analyses, the thermal stability of STFP is 200 °C and its activation energy is 65.48 kJ/mol. After a thorough comparison with other well-known natural fibres, the proposed properties of STFP demonstrate its superiority as a practical and effective natural fibre composite.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2023-4377","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The present work investigates the mechanical characteristics of randomly oriented short Sansevieria Trifasciata Fibre Polyester (STFP) composites. The STFP composites are fabricated using compression moulding methods with varying fibre weight percentages (5 %–50 %) and fibre lengths (5 mm–50 mm). It has been observed that the impact, flexural, and tensile strength of STFPs improve as the length of the fibre increases, up to a maximum of 40 mm. After that, these properties start to decrease as the length of the fibre further increases. Further, the analysis revealed that STFPs exhibited an increase in properties when the fibre weight percentage was less than 40 %, followed by a decrease in properties as the fibre percentage increased beyond that point. The impact strength of STFP is around 8.2 J/cm2. Similarly, the STFP has a flexural modulus and strength of about 3.4 GPa and 82.6 MPa, respectively. Lastly, the tensile strength of STFP is around 78.26 MPa, the elongation at break is between 6.25 % and 9.36 %, and the Young’s modulus is 11.8 GPa. The matrix and fibre interaction were examined by Scanning Electron Microscopy (SEM). Furthermore, Thermogravimetric (TGA) and Differential Scanning Calorimeter (DSC) analyses are carried out. From these analyses, the thermal stability of STFP is 200 °C and its activation energy is 65.48 kJ/mol. After a thorough comparison with other well-known natural fibres, the proposed properties of STFP demonstrate its superiority as a practical and effective natural fibre composite.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机定向短三叶草天然纤维复合材料的力学性能
摘要本工作研究了随机取向的短Sansevieria Trifasita纤维聚酯(STFP)复合材料的力学特性。STFP复合材料采用不同纤维重量百分比(5%-50%)和纤维长度(5 毫米-50 mm)。已经观察到,STFP的冲击、弯曲和拉伸强度随着纤维长度的增加而提高,最高可达40 此后,随着纤维长度的进一步增加,这些性能开始降低。此外,分析表明,当纤维重量百分比小于40时,STFP的性能有所提高 %, 随后随着纤维百分比增加超过该点,性能下降。STFP的冲击强度约为8.2 J/cm2。类似地,STFP具有约3.4的弯曲模量和强度 GPa和82.6 MPa。最后,STFP的抗拉强度约为78.26 MPa,断裂伸长率在6.25之间 % 和9.36 %, 杨氏模量为11.8 GPa。用扫描电子显微镜(SEM)研究了基体与纤维的相互作用。此外,还进行了热重分析(TGA)和差示扫描量热仪(DSC)分析。根据这些分析,STFP的热稳定性为200 °C,其活化能为65.48 kJ/mol。在与其他众所周知的天然纤维进行彻底比较后,STFP的性能证明了其作为一种实用有效的天然纤维复合材料的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1