{"title":"Performance Investigation of Ejector Assisted Power Cooling Absorption Cycle","authors":"Billal Mebarki̇","doi":"10.5541/ijot.1247392","DOIUrl":null,"url":null,"abstract":"In this paper, new cycle is developed to generate simultaneously electrical and cooling power by placing a turbine between the generator and ejector in the conventional ejector-assisted absorption cooling cycle. The aim of developed cycle is to increase the exergy efficiency of cycle by adding an electrical power generation made it more environmentally friendly and reduce its dependents of fossil energy sources. The first, second laws of thermodynamic, mass and energy balance is applied for each cycle component and the constant mixing pressure ejector model is used to develop a numerical model of proposed cycle. The results depict that the augmentation of generation temperature is positively affected the work produced in the turbine contrary for cycle coefficient of performance, for every working conditions there are a certain value of generation temperature which its exergy performance of cycle achieves the maximum, the augmentation of output pressure of turbine is positively affected the cycle coefficient of performance contrary of the work produced in the turbine and the cycle exergy efficiency and the augmentation of condensation temperature is positively affected the cycle exergy efficiency and the work produced in the turbine contrary for cycle coefficient of performance and the augmentation of evaporation temperature is positively affected the cycle coefficient of performance and the cycle exergy efficiency contrary for the work produced in the turbine The results also show that the improvement of exergy efficiency of proposed cycle is 29.41% and 46% compared with the absorption cooling cycle with double and triple effect under the same operating conditions.","PeriodicalId":14438,"journal":{"name":"International Journal of Thermodynamics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5541/ijot.1247392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, new cycle is developed to generate simultaneously electrical and cooling power by placing a turbine between the generator and ejector in the conventional ejector-assisted absorption cooling cycle. The aim of developed cycle is to increase the exergy efficiency of cycle by adding an electrical power generation made it more environmentally friendly and reduce its dependents of fossil energy sources. The first, second laws of thermodynamic, mass and energy balance is applied for each cycle component and the constant mixing pressure ejector model is used to develop a numerical model of proposed cycle. The results depict that the augmentation of generation temperature is positively affected the work produced in the turbine contrary for cycle coefficient of performance, for every working conditions there are a certain value of generation temperature which its exergy performance of cycle achieves the maximum, the augmentation of output pressure of turbine is positively affected the cycle coefficient of performance contrary of the work produced in the turbine and the cycle exergy efficiency and the augmentation of condensation temperature is positively affected the cycle exergy efficiency and the work produced in the turbine contrary for cycle coefficient of performance and the augmentation of evaporation temperature is positively affected the cycle coefficient of performance and the cycle exergy efficiency contrary for the work produced in the turbine The results also show that the improvement of exergy efficiency of proposed cycle is 29.41% and 46% compared with the absorption cooling cycle with double and triple effect under the same operating conditions.
期刊介绍:
The purpose and scope of the International Journal of Thermodynamics is · to provide a forum for the publication of original theoretical and applied work in the field of thermodynamics as it relates to systems, states, processes, and both non-equilibrium and equilibrium phenomena at all temporal and spatial scales. · to provide a multidisciplinary and international platform for the dissemination to academia and industry of both scientific and engineering contributions, which touch upon a broad class of disciplines that are foundationally linked to thermodynamics and the methods and analyses derived there from. · to assess how both the first and particularly the second laws of thermodynamics touch upon these disciplines. · to highlight innovative & pioneer research in the field of thermodynamics in the following subjects (but not limited to the following, novel research in new areas are strongly suggested): o Entropy in thermodynamics and information theory. o Thermodynamics in process intensification. o Biothermodynamics (topics such as self-organization far from equilibrium etc.) o Thermodynamics of nonadditive systems. o Nonequilibrium thermal complex systems. o Sustainable design and thermodynamics. o Engineering thermodynamics. o Energy.