Blake J. Plowman, Nathan Thompson, Anthony P. O’Mullane
{"title":"Probing the surface oxidation of chemically synthesised gold nanospheres and nanorods","authors":"Blake J. Plowman, Nathan Thompson, Anthony P. O’Mullane","doi":"10.1007/s13404-014-0141-1","DOIUrl":null,"url":null,"abstract":"<p>In this study, the electrochemical behaviour of commercially available gold spheres and rods stabilised by carboxylic acid and cetyl trimethyl ammonium bromide (CTAB) moieties, respectively, are investigated. The cyclic voltammetric behaviour in acidic electrolyte is distinctly different with the nanorods exhibiting unusual oxidative behaviour due to an electrodissolution process. The nanospheres exhibited responses typical of a highly defective surface which significantly impacted on electrocatalytic activity. A repetitive potential cycling cleaning procedure was also investigated which did not improve the activity of the nanorods and resulted in deactivating the gold spheres due to decreasing the level of surface defects.</p>","PeriodicalId":55086,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2014-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13404-014-0141-1","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gold Bulletin","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13404-014-0141-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 7
Abstract
In this study, the electrochemical behaviour of commercially available gold spheres and rods stabilised by carboxylic acid and cetyl trimethyl ammonium bromide (CTAB) moieties, respectively, are investigated. The cyclic voltammetric behaviour in acidic electrolyte is distinctly different with the nanorods exhibiting unusual oxidative behaviour due to an electrodissolution process. The nanospheres exhibited responses typical of a highly defective surface which significantly impacted on electrocatalytic activity. A repetitive potential cycling cleaning procedure was also investigated which did not improve the activity of the nanorods and resulted in deactivating the gold spheres due to decreasing the level of surface defects.
期刊介绍:
Gold Bulletin is the premier international peer reviewed journal on the latest science, technology and applications of gold. It includes papers on the latest research advances, state-of-the-art reviews, conference reports, book reviews and highlights of patents and scientific literature. Gold Bulletin does not publish manuscripts covering the snthesis of Gold nanoparticles in the presence of plant extracts or other nature-derived extracts. Gold Bulletin has been published over 40 years as a multidisciplinary journal read by chemists, physicists, engineers, metallurgists, materials scientists, biotechnologists, surface scientists, and nanotechnologists amongst others, both within industry and academia. Gold Bulletin is published in Association with the World Gold Council.