CO2 capture performance of a CaO sorbent modified with fulvic acid for the calcium looping cycle

IF 2.7 4区 环境科学与生态学 Q3 ENERGY & FUELS Greenhouse Gases: Science and Technology Pub Date : 2023-03-21 DOI:10.1002/ghg.2213
Dazhan Jiang, Yaru Wang, Zetong Li, Shuaipeng Li, Li Zhang, Luhan Chen, Zhiguo Sun
{"title":"CO2 capture performance of a CaO sorbent modified with fulvic acid for the calcium looping cycle","authors":"Dazhan Jiang,&nbsp;Yaru Wang,&nbsp;Zetong Li,&nbsp;Shuaipeng Li,&nbsp;Li Zhang,&nbsp;Luhan Chen,&nbsp;Zhiguo Sun","doi":"10.1002/ghg.2213","DOIUrl":null,"url":null,"abstract":"<p>Capturing CO<sub>2</sub> from fossil fuel combustion is of importance for mitigation of climate warming. Among the CO<sub>2</sub> capture technologies, the calcium-based sorbent method is promising. However, the most prominent problem of this method at present is that the activity of the sorbent decreases as the number of cycle reactions increases. It seriously affects the industrial application of the calcium-based sorbent method in carbon capture technology. Fulvic acid (FA) is a biologically active and soluble component of humic acid. Compared with other humic acids, it contains more oxygen and heterocyclic rings. Also, the rings are connected by bridge bonds. Therefore, the ability of FA to chelate cations and its adsorption capacity is stronger than the other humic acids. Therefore, in this work, we first proposed using FA to modify CaO to improve CO<sub>2</sub> capture from flue gas. The effects of calcination temperature, carbonation temperature, reaction time and the amount of doped FA on the carbonation conversion rate (CCR) of CaO modified with FA (FA/CaO) were studied in the calcining/carbonizing room at atmospheric pressure. The experiment showed that the first CCR (<i>X</i><sub>1</sub>) of FA/CaO reached 0.872 under the optimal conditions, which was 31% higher than <i>X</i><sub>1</sub> of original CaO. The 20th CCR (<i>X</i><sub>20</sub>) was still as high as 0.47, which was three times than <i>X</i><sub>20</sub> of original CaO. In addition, the sorbent was analyzed and characterized by XRD, SEM, BET and LPSA. Due to the doped FA, the microstructure of CaO became fluffy and open, which improved the specific surface area and pore size of CaO. It indicated that the addition of FA was beneficial to the diffusion and absorption of CO<sub>2</sub> and delayed the appearance of sintering, which significantly enhanced the CO<sub>2</sub> capture performance of CaO. Using FA to modify CaO to capture CO<sub>2</sub> provides an idea for efficient carbon capture, and has practical application potential. © 2023 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2213","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Capturing CO2 from fossil fuel combustion is of importance for mitigation of climate warming. Among the CO2 capture technologies, the calcium-based sorbent method is promising. However, the most prominent problem of this method at present is that the activity of the sorbent decreases as the number of cycle reactions increases. It seriously affects the industrial application of the calcium-based sorbent method in carbon capture technology. Fulvic acid (FA) is a biologically active and soluble component of humic acid. Compared with other humic acids, it contains more oxygen and heterocyclic rings. Also, the rings are connected by bridge bonds. Therefore, the ability of FA to chelate cations and its adsorption capacity is stronger than the other humic acids. Therefore, in this work, we first proposed using FA to modify CaO to improve CO2 capture from flue gas. The effects of calcination temperature, carbonation temperature, reaction time and the amount of doped FA on the carbonation conversion rate (CCR) of CaO modified with FA (FA/CaO) were studied in the calcining/carbonizing room at atmospheric pressure. The experiment showed that the first CCR (X1) of FA/CaO reached 0.872 under the optimal conditions, which was 31% higher than X1 of original CaO. The 20th CCR (X20) was still as high as 0.47, which was three times than X20 of original CaO. In addition, the sorbent was analyzed and characterized by XRD, SEM, BET and LPSA. Due to the doped FA, the microstructure of CaO became fluffy and open, which improved the specific surface area and pore size of CaO. It indicated that the addition of FA was beneficial to the diffusion and absorption of CO2 and delayed the appearance of sintering, which significantly enhanced the CO2 capture performance of CaO. Using FA to modify CaO to capture CO2 provides an idea for efficient carbon capture, and has practical application potential. © 2023 Society of Chemical Industry and John Wiley & Sons, Ltd.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
富里酸改性CaO吸附剂在钙循环中对CO2的捕集性能
从化石燃料燃烧中捕获二氧化碳对减缓气候变暖具有重要意义。在二氧化碳捕集技术中,钙基吸附剂法是一种很有前途的捕集技术。但目前该方法最突出的问题是吸附剂的活性随着循环反应次数的增加而降低。严重影响了钙基吸附剂法在碳捕集技术中的工业应用。黄腐酸(FA)是一种具有生物活性和可溶性的腐植酸成分。与其他腐植酸相比,它含有更多的氧和杂环。此外,这些环是通过桥键连接的。因此,FA对阳离子的螯合能力和吸附能力强于其他腐植酸。因此,在这项工作中,我们首次提出使用FA改性CaO来提高烟气中CO2的捕集。在常压煅烧/碳化室内,研究了煅烧温度、碳化温度、反应时间和掺FA量对FA改性CaO (FA/CaO)的碳化转化率(CCR)的影响。实验表明,在最优条件下,FA/CaO的第一次CCR (X1)达到0.872,比原CaO的X1提高了31%。20期CCR (X20)仍高达0.47,是原CaO X20的3倍。并用XRD、SEM、BET、LPSA等方法对该吸附剂进行了表征。由于FA的掺杂,CaO的微观结构变得蓬松和开放,提高了CaO的比表面积和孔径。结果表明,FA的加入有利于CO2的扩散和吸收,延缓了烧结的出现,显著提高了CaO的CO2捕集性能。利用FA改性CaO捕集CO2为高效碳捕集提供了思路,具有实际应用潜力。©2023化学工业协会和John Wiley &儿子,有限公司
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Greenhouse Gases: Science and Technology
Greenhouse Gases: Science and Technology ENERGY & FUELS-ENGINEERING, ENVIRONMENTAL
CiteScore
4.90
自引率
4.50%
发文量
55
审稿时长
3 months
期刊介绍: Greenhouse Gases: Science and Technology is a new online-only scientific journal dedicated to the management of greenhouse gases. The journal will focus on methods for carbon capture and storage (CCS), as well as utilization of carbon dioxide (CO2) as a feedstock for fuels and chemicals. GHG will also provide insight into strategies to mitigate emissions of other greenhouse gases. Significant advances will be explored in critical reviews, commentary articles and short communications of broad interest. In addition, the journal will offer analyses of relevant economic and political issues, industry developments and case studies. Greenhouse Gases: Science and Technology is an exciting new online-only journal published as a co-operative venture of the SCI (Society of Chemical Industry) and John Wiley & Sons, Ltd
期刊最新文献
Issue Information Core-flooding experiments of various concentrations of CO2/N2 mixture in different rocks: II. Effect of rock properties on residual water Development of a multicomponent counter-current flow model to evaluate the impact of oxygen and water vapor on CO2 removal performance in a hollow fiber membrane contactor Invasion percolation & basin modelling for CCS site screening and characterization A study on degradation and CO2 capture performance of aqueous amino acid salts for direct air capture applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1