首页 > 最新文献

Greenhouse Gases: Science and Technology最新文献

英文 中文
Core-flooding experiments of various concentrations of CO2/N2 mixture in different rocks: II. Effect of rock properties on residual water 不同岩石中不同浓度 CO2/N2 混合物的岩心充水实验:II.岩石性质对残余水的影响
IF 2.7 4区 环境科学与生态学 Q3 ENERGY & FUELS Pub Date : 2024-09-23 DOI: 10.1002/ghg.2305
Yi Li, Xiangyang Li, Zhikai Hu, Ruiting Suo, Liang Xue, Qingchun Yu

During CO2 storage in deep saline aquifers, the presence of residual water has an important influence on the storage efficiency and safety. In this study, natural rock cores taken from deep reservoirs in the Ordos Basin and Fukang, Xinjiang are used as research objects. Nine groups of core-flooding experiments are performed under different CO2/N2 gas mixture ratios to study the influence of rock properties (mineral composition, permeability, porosity and pore structure) on the residual water. Furthermore, the geophysical and chemical properties of rock cores are analyzed by X-ray diffraction, electron microscopy, field emission scanning electron microscopy and piezoelectric mercury method. The results show that residual water saturation is a quantitative power function of drainage time. The residual water saturation is positively correlated with the total amount of quartz and feldspar and increases with increasing permeability. Moreover, both the average and median pore throat radius show a strong inverse correlation with irreducible residual water saturation; as these radius increase, the residual water saturation decreases. In contrast, the porosity and maximum pore throat radius display a weaker correlation with irreducible residual water saturation. This study is of great value for engineering practices such as the site selection of CO2 storage projects in saline aquifer and improvement of CO2 storage efficiency. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.

在深层含盐含水层中封存二氧化碳时,残余水的存在对封存效率和安全性有重要影响。本研究以鄂尔多斯盆地和新疆阜康深层储层的天然岩心为研究对象。在不同的 CO2/N2 混合气体比例下进行了九组岩心充水实验,以研究岩石性质(矿物成分、渗透率、孔隙度和孔隙结构)对剩余水的影响。此外,还利用 X 射线衍射、电子显微镜、场发射扫描电子显微镜和压电水银法分析了岩心的地球物理和化学特性。结果表明,残余水饱和度是排水时间的定量幂函数。残余水饱和度与石英和长石的总量呈正相关,并随着渗透率的增加而增加。此外,平均孔喉半径和中值孔喉半径与不可还原残余水饱和度呈强烈的反比关系;随着孔喉半径的增加,残余水饱和度降低。相比之下,孔隙度和最大孔喉半径与不可还原残余水饱和度的相关性较弱。这项研究对含盐含水层二氧化碳封存项目的选址和提高二氧化碳封存效率等工程实践具有重要价值。© 2024 化学工业学会和约翰-威利父子有限公司版权所有。
{"title":"Core-flooding experiments of various concentrations of CO2/N2 mixture in different rocks: II. Effect of rock properties on residual water","authors":"Yi Li,&nbsp;Xiangyang Li,&nbsp;Zhikai Hu,&nbsp;Ruiting Suo,&nbsp;Liang Xue,&nbsp;Qingchun Yu","doi":"10.1002/ghg.2305","DOIUrl":"https://doi.org/10.1002/ghg.2305","url":null,"abstract":"<p>During CO<sub>2</sub> storage in deep saline aquifers, the presence of residual water has an important influence on the storage efficiency and safety. In this study, natural rock cores taken from deep reservoirs in the Ordos Basin and Fukang, Xinjiang are used as research objects. Nine groups of core-flooding experiments are performed under different CO<sub>2</sub>/N<sub>2</sub> gas mixture ratios to study the influence of rock properties (mineral composition, permeability, porosity and pore structure) on the residual water. Furthermore, the geophysical and chemical properties of rock cores are analyzed by X-ray diffraction, electron microscopy, field emission scanning electron microscopy and piezoelectric mercury method. The results show that residual water saturation is a quantitative power function of drainage time. The residual water saturation is positively correlated with the total amount of quartz and feldspar and increases with increasing permeability. Moreover, both the average and median pore throat radius show a strong inverse correlation with irreducible residual water saturation; as these radius increase, the residual water saturation decreases. In contrast, the porosity and maximum pore throat radius display a weaker correlation with irreducible residual water saturation. This study is of great value for engineering practices such as the site selection of CO<sub>2</sub> storage projects in saline aquifer and improvement of CO<sub>2</sub> storage efficiency. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 5","pages":"871-886"},"PeriodicalIF":2.7,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a multicomponent counter-current flow model to evaluate the impact of oxygen and water vapor on CO2 removal performance in a hollow fiber membrane contactor 开发多组分逆流模型,评估氧气和水蒸气对中空纤维膜接触器去除二氧化碳性能的影响
IF 2.7 4区 环境科学与生态学 Q3 ENERGY & FUELS Pub Date : 2024-09-10 DOI: 10.1002/ghg.2304
Qiang Yang, Qianguo Lin, Cheng Tung Chong, Yuyang Zhang

Membrane contactor has emerged as a promising technology for flue gas carbon capture as it integrates the advantages of high capture efficiency of absorption technology and compact design of membrane technology. However, the integration performance could be affected by the presence of minor components such as water vapor and residual oxygen in real gas conditions, owing to vapor condensation and dynamic oxidation in gas-liquid transfer interface. Therefore, it remains a need to develop a model that enables the prediction of CO2 removal performance of membrane contactor under industrial real gas conditions. In the present study, a multicomponent model considering the impact of water vapor and oxygen on CO2 removal in membrane contactors was developed. The model, based on mass transfer equilibrium, gas reaction kinetics, and diffusion coefficients, describes the transport and reaction dynamics of multicomponent gases within the gas, liquid, and membrane phases. Utilizing the finite element method (FEM) for solution, the model was demonstrated with a case study of CO2 separation from a quaternary gas mixture by a hollow fiber membrane contactor (HFMC). The results highlight the importance of considering water vapor and oxygen in the design and evaluation of industrial membrane contactor systems, offering valuable insights for enhancing CO2 separation efficiency in practical applications. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.

膜接触器集吸收技术的高捕集效率和膜技术的紧凑设计优势于一身,已成为一种前景广阔的烟气碳捕集技术。然而,在实际气体条件下,由于气液传输界面的水蒸气凝结和动态氧化作用,水蒸气和残余氧气等次要成分的存在可能会影响集成性能。因此,仍有必要建立一个模型,以预测膜接触器在工业实际气体条件下的二氧化碳去除性能。本研究建立了一个多成分模型,考虑了水蒸气和氧气对膜接触器去除二氧化碳的影响。该模型以传质平衡、气体反应动力学和扩散系数为基础,描述了多组分气体在气相、液相和膜相中的传输和反应动力学。利用有限元法(FEM)求解,该模型通过中空纤维膜接触器(HFMC)从四元气体混合物中分离出二氧化碳的案例研究得到了验证。研究结果强调了在设计和评估工业膜接触器系统时考虑水蒸气和氧气的重要性,为提高实际应用中的二氧化碳分离效率提供了宝贵的见解。© 2024 化学工业协会和 John Wiley & Sons, Ltd. 保留所有权利。
{"title":"Development of a multicomponent counter-current flow model to evaluate the impact of oxygen and water vapor on CO2 removal performance in a hollow fiber membrane contactor","authors":"Qiang Yang,&nbsp;Qianguo Lin,&nbsp;Cheng Tung Chong,&nbsp;Yuyang Zhang","doi":"10.1002/ghg.2304","DOIUrl":"https://doi.org/10.1002/ghg.2304","url":null,"abstract":"<p>Membrane contactor has emerged as a promising technology for flue gas carbon capture as it integrates the advantages of high capture efficiency of absorption technology and compact design of membrane technology. However, the integration performance could be affected by the presence of minor components such as water vapor and residual oxygen in real gas conditions, owing to vapor condensation and dynamic oxidation in gas-liquid transfer interface. Therefore, it remains a need to develop a model that enables the prediction of CO<sub>2</sub> removal performance of membrane contactor under industrial real gas conditions. In the present study, a multicomponent model considering the impact of water vapor and oxygen on CO<sub>2</sub> removal in membrane contactors was developed. The model, based on mass transfer equilibrium, gas reaction kinetics, and diffusion coefficients, describes the transport and reaction dynamics of multicomponent gases within the gas, liquid, and membrane phases. Utilizing the finite element method (FEM) for solution, the model was demonstrated with a case study of CO<sub>2</sub> separation from a quaternary gas mixture by a hollow fiber membrane contactor (HFMC). The results highlight the importance of considering water vapor and oxygen in the design and evaluation of industrial membrane contactor systems, offering valuable insights for enhancing CO<sub>2</sub> separation efficiency in practical applications. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 5","pages":"776-790"},"PeriodicalIF":2.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Invasion percolation & basin modelling for CCS site screening and characterization 用于二氧化碳捕获和封存场地筛选和特征描述的侵蚀渗流和盆地建模
IF 2.7 4区 环境科学与生态学 Q3 ENERGY & FUELS Pub Date : 2024-09-06 DOI: 10.1002/ghg.2303
Friedemann Baur, Sam Hiebert

During the early screening phase of Carbon Capture and Storage (CCS) site evaluations limited time and data are available and hence CO2 plume evaluations using time and data intensive reservoir simulations are almost never performed. However, there is still a need for early plume evaluations to risk and rank injection sites relative to each other. Therefore, an alternative fluid migration method called invasion percolation is adopted for the CCS screening phase to predict the extent and location of CO2 plumes in the subsurface. Invasion percolation as part of basin modeling is a rapid method, which requires limited data and is ideal for the early screening phase. Invasion percolation results are compared to uncalibrated reservoir models, typical for the screening phase, revealing that plume location shape and size are very reasonable especially when compared to seismic observed plume outlines. It can be concluded that invasion percolation as part of basin modeling is a fit for purpose method, which can assess multiple opportunities rapidly during the early intake screening phase to risk and rank opportunities relative to each other and to build a CCS injection site portfolio. In addition to the plume evaluation, basin models can provide useful basin-scale or injection site specific pressure and temperature predictions as well as CO2 density estimates for static volume calculations before detailed reservoir and stratigraphic models are available. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.

在碳捕获与封存(CCS)场地评估的早期筛选阶段,由于时间和数据有限,因此几乎从未使用时间和数据密集型储层模拟来进行二氧化碳羽流评估。然而,仍有必要进行早期羽流评估,以便对注入地点进行风险排序。因此,在二氧化碳捕获与封存(CCS)筛选阶段采用了另一种流体迁移方法--入侵渗流法,以预测地下二氧化碳羽流的范围和位置。作为盆地建模的一部分,入侵渗流法是一种快速方法,需要的数据有限,非常适合早期筛选阶段。入侵渗流结果与筛选阶段典型的未校准储层模型进行了比较,发现羽流位置的形状和大小非常合理,尤其是与地震观测到的羽流轮廓相比。可以得出的结论是,作为盆地建模的一部分,入侵渗流是一种适用的方法,可以在早期摄入筛选阶段快速评估多个机会,对机会进行风险排序,并建立 CCS 注入地点组合。除了羽流评估之外,盆地模型还可以在获得详细的储层和地层模型之前,提供有用的盆地尺度或注入地点特定的压力和温度预测,以及用于静态体积计算的二氧化碳密度估算。© 2024 化学工业协会和 John Wiley & Sons, Ltd. 保留所有权利。
{"title":"Invasion percolation & basin modelling for CCS site screening and characterization","authors":"Friedemann Baur,&nbsp;Sam Hiebert","doi":"10.1002/ghg.2303","DOIUrl":"https://doi.org/10.1002/ghg.2303","url":null,"abstract":"<p>During the early screening phase of Carbon Capture and Storage (CCS) site evaluations limited time and data are available and hence CO<sub>2</sub> plume evaluations using time and data intensive reservoir simulations are almost never performed. However, there is still a need for early plume evaluations to risk and rank injection sites relative to each other. Therefore, an alternative fluid migration method called invasion percolation is adopted for the CCS screening phase to predict the extent and location of CO<sub>2</sub> plumes in the subsurface. Invasion percolation as part of basin modeling is a rapid method, which requires limited data and is ideal for the early screening phase. Invasion percolation results are compared to uncalibrated reservoir models, typical for the screening phase, revealing that plume location shape and size are very reasonable especially when compared to seismic observed plume outlines. It can be concluded that invasion percolation as part of basin modeling is a fit for purpose method, which can assess multiple opportunities rapidly during the early intake screening phase to risk and rank opportunities relative to each other and to build a CCS injection site portfolio. In addition to the plume evaluation, basin models can provide useful basin-scale or injection site specific pressure and temperature predictions as well as CO<sub>2</sub> density estimates for static volume calculations before detailed reservoir and stratigraphic models are available. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 5","pages":"760-775"},"PeriodicalIF":2.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A study on degradation and CO2 capture performance of aqueous amino acid salts for direct air capture applications 用于直接空气捕获的氨基酸水盐的降解和二氧化碳捕获性能研究
IF 2.7 4区 环境科学与生态学 Q3 ENERGY & FUELS Pub Date : 2024-08-16 DOI: 10.1002/ghg.2302
Ali Kiani, Will Conway, Mohamed H. Abdellah, Graeme Puxty, Ann-Joelle Minor, Gerard Kluivers, Robert Bennett, Paul Feron

We have previously proposed amino acid salts solutions as potential absorption liquids for direct air capture (DAC) of CO2 from the atmosphere. However, little is known about their relevant CO2 solubilities, CO2 mass transfer rates, and susceptibility to oxidative and thermal degradation under conditions relevant to DAC. We report here on the overall solubility of CO2 and CO2 mass transfer rates into a series of amino acid salts solutions. Additionally, the robustness of various amino acid salt solutions to thermal and oxidative degradation has been assessed.

CO2 absorption rates into the amino acid salts solutions were observed to be in the same order of magnitude as aqueous monoethanolamine (MEA), with sarcosinate and lysinate solutions providing the fastest and slowest CO2 mass transfer rates at 25°C, respectively. Degradation data revealed that all amino acid salt solutions investigated in this study displayed elevated rates of thermal degradation at both 120 and 150°C relative to MEA. The opposite trend was observed with respect to oxidative degradation where all amino acid salt solutions showed a greater resistance to oxidative degradation than that observed for MEA under the conditions investigated here. Considering the degradation, CO2 absorption capacity, and CO2 mass transfer rate data, we propose the potassium salts of proline and sarcosine as the most promising amino acid salts (of those considered here) for further evaluation in DAC processes. Overall, this study provides valuable insight into the suitability of various amino acid salt solutions as absorption liquid for DAC. © 2024 The Author(s). Greenhouse Gases: Science and Technology published by Society of Chemical Industry and John Wiley & Sons Ltd.

我们曾提议将氨基酸盐溶液作为潜在的吸收液,用于直接空气捕集(DAC)大气中的二氧化碳。然而,我们对氨基酸盐溶液的相关二氧化碳溶解度、二氧化碳质量转移率以及在 DAC 相关条件下的氧化和热降解敏感性知之甚少。我们在此报告一系列氨基酸盐溶液中二氧化碳的总体溶解度和二氧化碳的质量转移率。据观察,氨基酸盐溶液的二氧化碳吸收率与单乙醇胺(MEA)水溶液处于同一数量级,其中肌氨酸盐和赖氨酸盐溶液在 25°C 时的二氧化碳质量转移率分别最快和最慢。降解数据显示,本研究中调查的所有氨基酸盐溶液在 120 和 150°C 时的热降解率均高于 MEA。在氧化降解方面则观察到了相反的趋势,在本文研究的条件下,所有氨基酸盐溶液都比 MEA 显示出更强的抗氧化降解能力。考虑到降解、二氧化碳吸收能力和二氧化碳传质速率等数据,我们建议将脯氨酸钾盐和肌氨酸钾盐作为最有前途的氨基酸盐(在本文所考虑的氨基酸盐中),以便在 DAC 工艺中进行进一步评估。总之,本研究为了解各种氨基酸盐溶液作为 DAC 吸收液的适用性提供了宝贵的见解。© 2024 作者。温室气体:由化学工业协会和 John Wiley & Sons Ltd. 出版。
{"title":"A study on degradation and CO2 capture performance of aqueous amino acid salts for direct air capture applications","authors":"Ali Kiani,&nbsp;Will Conway,&nbsp;Mohamed H. Abdellah,&nbsp;Graeme Puxty,&nbsp;Ann-Joelle Minor,&nbsp;Gerard Kluivers,&nbsp;Robert Bennett,&nbsp;Paul Feron","doi":"10.1002/ghg.2302","DOIUrl":"https://doi.org/10.1002/ghg.2302","url":null,"abstract":"<p>We have previously proposed amino acid salts solutions as potential absorption liquids for direct air capture (DAC) of CO<sub>2</sub> from the atmosphere. However, little is known about their relevant CO<sub>2</sub> solubilities, CO<sub>2</sub> mass transfer rates, and susceptibility to oxidative and thermal degradation under conditions relevant to DAC. We report here on the overall solubility of CO<sub>2</sub> and CO<sub>2</sub> mass transfer rates into a series of amino acid salts solutions. Additionally, the robustness of various amino acid salt solutions to thermal and oxidative degradation has been assessed.</p><p>CO<sub>2</sub> absorption rates into the amino acid salts solutions were observed to be in the same order of magnitude as aqueous monoethanolamine (MEA), with sarcosinate and lysinate solutions providing the fastest and slowest CO<sub>2</sub> mass transfer rates at 25°C, respectively. Degradation data revealed that all amino acid salt solutions investigated in this study displayed elevated rates of thermal degradation at both 120 and 150°C relative to MEA. The opposite trend was observed with respect to oxidative degradation where all amino acid salt solutions showed a greater resistance to oxidative degradation than that observed for MEA under the conditions investigated here. Considering the degradation, CO<sub>2</sub> absorption capacity, and CO<sub>2</sub> mass transfer rate data, we propose the potassium salts of proline and sarcosine as the most promising amino acid salts (of those considered here) for further evaluation in DAC processes. Overall, this study provides valuable insight into the suitability of various amino acid salt solutions as absorption liquid for DAC. © 2024 The Author(s). <i>Greenhouse Gases: Science and Technology</i> published by Society of Chemical Industry and John Wiley &amp; Sons Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 5","pages":"859-870"},"PeriodicalIF":2.7,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ghg.2302","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validation of cubic EoS mixing rules and multi-fluid helmholtz energy approximation EoS for the phase behaviour modelling of CO2-rich binary mixtures at low temperatures 用于富含二氧化碳的二元混合物在低温下的相行为建模的三次方程混合规则和多流体舵霍兹能量近似方程的验证
IF 2.7 4区 环境科学与生态学 Q3 ENERGY & FUELS Pub Date : 2024-08-15 DOI: 10.1002/ghg.2300
Franklin Okoro, Antonin Chapoy, Pezhman Ahmadi, Rod Burgass

The transportation of CO2 from the capture site to the storage location is a crucial phase in carbon capture, utilisation and storage (CCUS) process. For offshore operations, ship transportation is considered a viable alternative, and this would entail operations at low temperatures (down to 223.15 K). A review of the literature revealed that there is limited experimental data on CO2-rich systems at low temperatures, thus, the need to investigate the phase behaviour of CO2-rich systems at these conditions. This study validated and compared the accuracies of Peng–Robinson (PR) equation of state (EoS) with three different mixing rules (the classical with original and adjusted binary interaction parameters, the Wong–Sandler, and the Orbey–Wong–Sandler mixing rules) against the multi-fluid helmholtz energy approximation (MFHEA - with original and adjusted binary-specific reducing parameters) EoS in the prediction of bubble points of CO2-rich binary systems (CO2-CH4, CO2–O2, CO2–Ar, and CO2–N2) for CCUS applications. The experimental studies used for the validation of the models were conducted at low temperatures (228.15–273.15 K with overall uncertainties of 0.14 K) and for five different CO2 mole ratios (99.5, 99, 98.5, 98 and 95% with overall uncertainties of 0.032%) using the constant composition expansion method. The overall uncertainty of the pressure measurements was 0.03 MPa. From the study, it was observed that there was a significant effect of binary interaction parameters (BIP) adjustment on the performance of PR-EoS with classical mixing rule, especially for the CO2–N2 system. For all the systems, the predictions of PR-EoS with the classical mixing rules and the adjusted BIPs were the most accurate in terms of the average absolute deviations from the experimental data. The model also predicted the literature data well in comparison with the other models (with less than 5% deviations for all the data points). Further analysis also proved that the model dew point predictions were in reasonable agreement with the available literature data at the considered conditions. As a result, the model could be adopted to fill the existing knowledge gaps of the studied systems at conditions (143.15–223.15 K) where experimental studies were not feasible. © 2024 The Author(s). Greenhouse Gases: Science and Technology published by Society of Chemical Industry and John Wiley & Sons Ltd.

将二氧化碳从捕获地点运输到贮存地点是碳捕获、利用和贮存(CCUS)过程中的一个关键阶段。对于近海作业,船舶运输被认为是一个可行的替代方案,这将需要在低温(低至 223.15 K)条件下作业。文献综述显示,低温下富二氧化碳系统的实验数据有限,因此有必要研究这些条件下富二氧化碳系统的相态。本研究在预测富二氧化碳二元体系(CO2-CH4、CO2-O2、CO2-Ar 和 CO2-N2)的气泡点时,验证并比较了彭-罗宾逊(PR)状态方程(EoS)与多流体舵霍兹能量近似(MFHEA - 具有原始和调整的二元特定还原参数)的三种不同混合规则(具有原始和调整的二元相互作用参数的经典混合规则、Wong-Sandler 混合规则和 Orbey-Wong-Sandler 混合规则)在 CCUS 应用中的准确性。用于验证模型的实验研究是在低温(228.15-273.15 K,总体不确定性为 0.14 K)条件下,采用恒定成分膨胀法对五种不同的二氧化碳摩尔比(99.5、99、98.5、98 和 95%,总体不确定性为 0.032%)进行的。压力测量的总体不确定性为 0.03 兆帕。研究发现,二元相互作用参数(BIP)的调整对采用经典混合规则的 PR-EoS 的性能有显著影响,尤其是在 CO2-N2 系统中。就与实验数据的平均绝对偏差而言,采用经典混合规则和经调整的 BIP 的 PR-EoS 对所有系统的预测都是最准确的。与其他模型相比,该模型还能很好地预测文献数据(所有数据点的偏差均小于 5%)。进一步的分析还证明,在考虑的条件下,该模型的露点预测与现有文献数据相当吻合。因此,在无法进行实验研究的条件下(143.15-223.15 K),该模型可用于填补所研究系统的现有知识空白。© 2024 The Author(s).温室气体:由化学工业协会和 John Wiley & Sons Ltd. 出版。
{"title":"Validation of cubic EoS mixing rules and multi-fluid helmholtz energy approximation EoS for the phase behaviour modelling of CO2-rich binary mixtures at low temperatures","authors":"Franklin Okoro,&nbsp;Antonin Chapoy,&nbsp;Pezhman Ahmadi,&nbsp;Rod Burgass","doi":"10.1002/ghg.2300","DOIUrl":"https://doi.org/10.1002/ghg.2300","url":null,"abstract":"<p>The transportation of CO<sub>2</sub> from the capture site to the storage location is a crucial phase in carbon capture, utilisation and storage (CCUS) process. For offshore operations, ship transportation is considered a viable alternative, and this would entail operations at low temperatures (down to 223.15 K). A review of the literature revealed that there is limited experimental data on CO<sub>2</sub>-rich systems at low temperatures, thus, the need to investigate the phase behaviour of CO<sub>2</sub>-rich systems at these conditions. This study validated and compared the accuracies of Peng–Robinson (PR) equation of state (EoS) with three different mixing rules (the classical with original and adjusted binary interaction parameters, the Wong–Sandler, and the Orbey–Wong–Sandler mixing rules) against the multi-fluid helmholtz energy approximation (MFHEA - with original and adjusted binary-specific reducing parameters) EoS in the prediction of bubble points of CO<sub>2</sub>-rich binary systems (CO<sub>2</sub>-CH<sub>4</sub>, CO<sub>2</sub>–O<sub>2</sub>, CO<sub>2</sub>–Ar, and CO<sub>2</sub>–N<sub>2</sub>) for CCUS applications. The experimental studies used for the validation of the models were conducted at low temperatures (228.15–273.15 K with overall uncertainties of 0.14 K) and for five different CO<sub>2</sub> mole ratios (99.5, 99, 98.5, 98 and 95% with overall uncertainties of 0.032%) using the constant composition expansion method. The overall uncertainty of the pressure measurements was 0.03 MPa. From the study, it was observed that there was a significant effect of binary interaction parameters (BIP) adjustment on the performance of PR-EoS with classical mixing rule, especially for the CO<sub>2</sub>–N<sub>2</sub> system. For all the systems, the predictions of PR-EoS with the classical mixing rules and the adjusted BIPs were the most accurate in terms of the average absolute deviations from the experimental data. The model also predicted the literature data well in comparison with the other models (with less than 5% deviations for all the data points). Further analysis also proved that the model dew point predictions were in reasonable agreement with the available literature data at the considered conditions. As a result, the model could be adopted to fill the existing knowledge gaps of the studied systems at conditions (143.15–223.15 K) where experimental studies were not feasible. © 2024 The Author(s). <i>Greenhouse Gases: Science and Technology</i> published by Society of Chemical Industry and John Wiley &amp; Sons Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 5","pages":"829-858"},"PeriodicalIF":2.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ghg.2300","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in covalent organic framework-based nanocomposites: Pioneering materials for CO2 reduction and storage 基于共价有机框架的纳米复合材料的进展:用于减少和储存二氧化碳的先锋材料
IF 2.7 4区 环境科学与生态学 Q3 ENERGY & FUELS Pub Date : 2024-08-15 DOI: 10.1002/ghg.2297
Pallavi Singh, Pragnesh N Dave

The persistent increase in atmospheric carbon dioxide (CO2) concentration poses a significant contemporary challenge. Contemporary chemistry is heavily focused on sustainable solutions, particularly the photo-/electrocatalytic reduction of CO2 and its utilization for energy storage. Despite promising prospects, efficient chemical CO2 conversion faces obstacles such as ineffective CO2 uptake/activation and catalyst mass transport. Covalent organic frameworks (COFs) have emerged as potential catalysts due to their precise structural design, functionalizable chemical environments, and robust architectures. COF-based materials, especially those incorporating diverse active sites like single metal sites, metal nanoparticles, and metal oxides, hold promise for CO2 conversion and energy storage. This review sheds light on CO2 photoreduction/electroreduction and storage in Li-CO2 batteries catalyzed by COF-based composites, focusing on recent advancements in integrating COFs with nanoparticles for CO2 reduction. It discusses design principles, synthesis methods, and catalytic mechanisms driving the enhanced performance of COF-based nanocomposites across various applications, including electrochemical reduction, photocatalysis, and lithium CO2 batteries. The review also addresses challenges and prospects of COF-based catalysts for efficient CO2 utilization, aiming to steer the development of innovative COF-based nanocomposites, thus advancing sustainable energy technologies and environmental stewardship. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.

大气中二氧化碳(CO2)浓度的持续上升对当代提出了重大挑战。当代化学高度关注可持续的解决方案,特别是光催化/电催化还原二氧化碳并将其用于能源储存。尽管前景广阔,但高效的二氧化碳化学转化仍面临着二氧化碳吸收/活化效果不佳和催化剂质量迁移等障碍。共价有机框架(COF)因其精确的结构设计、可功能化的化学环境和坚固的结构而成为潜在的催化剂。以 COF 为基础的材料,尤其是那些包含多种活性位点(如单一金属位点、金属纳米颗粒和金属氧化物)的材料,有望用于二氧化碳转化和能量存储。本综述阐明了 COF 基复合材料催化的 CO2 光还原/电还原以及锂-CO2 电池中的 CO2 储能,重点介绍了将 COF 与纳米颗粒整合用于 CO2 还原的最新进展。报告讨论了设计原理、合成方法和催化机制,这些因素推动了基于 COF 的纳米复合材料在电化学还原、光催化和二氧化碳锂电池等各种应用中性能的提高。综述还探讨了基于 COF 的催化剂在高效利用二氧化碳方面所面临的挑战和前景,旨在引导基于 COF 的创新型纳米复合材料的发展,从而推动可持续能源技术和环境管理。© 2024 化学工业协会和 John Wiley & Sons, Ltd. 保留所有权利。
{"title":"Advancements in covalent organic framework-based nanocomposites: Pioneering materials for CO2 reduction and storage","authors":"Pallavi Singh,&nbsp;Pragnesh N Dave","doi":"10.1002/ghg.2297","DOIUrl":"https://doi.org/10.1002/ghg.2297","url":null,"abstract":"<p>The persistent increase in atmospheric carbon dioxide (CO<sub>2</sub>) concentration poses a significant contemporary challenge. Contemporary chemistry is heavily focused on sustainable solutions, particularly the photo-/electrocatalytic reduction of CO<sub>2</sub> and its utilization for energy storage. Despite promising prospects, efficient chemical CO<sub>2</sub> conversion faces obstacles such as ineffective CO<sub>2</sub> uptake/activation and catalyst mass transport. Covalent organic frameworks (COFs) have emerged as potential catalysts due to their precise structural design, functionalizable chemical environments, and robust architectures. COF-based materials, especially those incorporating diverse active sites like single metal sites, metal nanoparticles, and metal oxides, hold promise for CO<sub>2</sub> conversion and energy storage. This review sheds light on CO<sub>2</sub> photoreduction/electroreduction and storage in Li-CO<sub>2</sub> batteries catalyzed by COF-based composites, focusing on recent advancements in integrating COFs with nanoparticles for CO<sub>2</sub> reduction. It discusses design principles, synthesis methods, and catalytic mechanisms driving the enhanced performance of COF-based nanocomposites across various applications, including electrochemical reduction, photocatalysis, and lithium CO<sub>2</sub> batteries. The review also addresses challenges and prospects of COF-based catalysts for efficient CO<sub>2</sub> utilization, aiming to steer the development of innovative COF-based nanocomposites, thus advancing sustainable energy technologies and environmental stewardship. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 5","pages":"914-938"},"PeriodicalIF":2.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive review of experimental studies, numerical modeling, leakage risk assessment, monitoring, and control in geological storage of carbon dioxide: Implications for effective CO2 deployment strategies 全面回顾二氧化碳地质封存的实验研究、数值建模、泄漏风险评估、监测和控制:对二氧化碳有效部署战略的影响
IF 2.7 4区 环境科学与生态学 Q3 ENERGY & FUELS Pub Date : 2024-08-13 DOI: 10.1002/ghg.2295
Abobakr Sori, Jafarsadegh Moghaddas, Hasan Abedpour

The geological storage of carbon dioxide (CO2) represents a promising strategy for mitigating climate change by securely sequestering CO2 emissions. This review article aims to provide a comprehensive overview of the current state of research and development in the field of geological carbon dioxide (CO2) sequestration. We systematically examined a wide range of recent literature, focusing on advancements in numerical simulations, experimental studies, risk assessments, and monitoring techniques related to CO2 sequestration. Literature was selected based on relevance, recency, and contribution to the understanding of key challenges and solutions in CO2 storage, with sources spanning peer-reviewed journals, conference proceedings, and significant technical reports. Our review highlights several key themes: the integration of machine learning and advanced numerical models in predicting CO2 behavior in subsurface formations; innovative experimental approaches to understanding the physicochemical interactions between CO2, brine, and geological substrates; and the development of robust risk assessment frameworks to address potential leakage and induced seismicity. We also explore recent advancements in monitoring technologies, emphasizing their critical role in ensuring the long-term integrity and effectiveness of CO2 storage sites. Overall, this review synthesizes the latest findings and identifies gaps in current knowledge, providing a roadmap for future research directions. Our aim is to enhance the understanding of CO2 sequestration processes, support the development of safer and more efficient storage methods, and contribute to the global effort in mitigating climate change through effective carbon management strategies. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.

二氧化碳(CO2)的地质封存是通过安全封存二氧化碳排放来减缓气候变化的一项前景广阔的战略。这篇综述文章旨在全面概述二氧化碳(CO2)地质封存领域的研发现状。我们系统地研究了近期的大量文献,重点关注与二氧化碳封存相关的数值模拟、实验研究、风险评估和监测技术方面的进展。我们根据文献的相关性、新旧程度以及对理解二氧化碳封存的关键挑战和解决方案的贡献来选择文献,文献来源包括同行评审期刊、会议论文集和重要技术报告。我们的综述突出了几个关键主题:机器学习与先进数值模型在预测二氧化碳在地下地层中的行为方面的整合;了解二氧化碳、盐水和地质基质之间物理化学相互作用的创新实验方法;以及开发稳健的风险评估框架以解决潜在泄漏和诱发地震问题。我们还探讨了监测技术的最新进展,强调其在确保二氧化碳封存地点的长期完整性和有效性方面的关键作用。总之,本综述综合了最新研究成果,并指出了当前知识的不足,为未来的研究方向提供了路线图。我们的目标是加深对二氧化碳封存过程的理解,支持开发更安全、更高效的封存方法,并通过有效的碳管理策略为全球减缓气候变化做出贡献。© 2024 化学工业协会和约翰-威利父子有限公司版权所有。
{"title":"Comprehensive review of experimental studies, numerical modeling, leakage risk assessment, monitoring, and control in geological storage of carbon dioxide: Implications for effective CO2 deployment strategies","authors":"Abobakr Sori,&nbsp;Jafarsadegh Moghaddas,&nbsp;Hasan Abedpour","doi":"10.1002/ghg.2295","DOIUrl":"https://doi.org/10.1002/ghg.2295","url":null,"abstract":"<p>The geological storage of carbon dioxide (CO<sub>2</sub>) represents a promising strategy for mitigating climate change by securely sequestering CO<sub>2</sub> emissions. This review article aims to provide a comprehensive overview of the current state of research and development in the field of geological carbon dioxide (CO<sub>2</sub>) sequestration. We systematically examined a wide range of recent literature, focusing on advancements in numerical simulations, experimental studies, risk assessments, and monitoring techniques related to CO<sub>2</sub> sequestration. Literature was selected based on relevance, recency, and contribution to the understanding of key challenges and solutions in CO<sub>2</sub> storage, with sources spanning peer-reviewed journals, conference proceedings, and significant technical reports. Our review highlights several key themes: the integration of machine learning and advanced numerical models in predicting CO<sub>2</sub> behavior in subsurface formations; innovative experimental approaches to understanding the physicochemical interactions between CO<sub>2</sub>, brine, and geological substrates; and the development of robust risk assessment frameworks to address potential leakage and induced seismicity. We also explore recent advancements in monitoring technologies, emphasizing their critical role in ensuring the long-term integrity and effectiveness of CO<sub>2</sub> storage sites. Overall, this review synthesizes the latest findings and identifies gaps in current knowledge, providing a roadmap for future research directions. Our aim is to enhance the understanding of CO<sub>2</sub> sequestration processes, support the development of safer and more efficient storage methods, and contribute to the global effort in mitigating climate change through effective carbon management strategies. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 5","pages":"887-913"},"PeriodicalIF":2.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical simulation of CO2 geological sequestration and CO2-ECBM in coal beds of Longtan Formation, Xiangzhong Depression, Hunan Province, China 中国湖南省湘中凹陷龙潭地层煤层二氧化碳地质封存和二氧化碳-ECBM数值模拟
IF 2.7 4区 环境科学与生态学 Q3 ENERGY & FUELS Pub Date : 2024-08-10 DOI: 10.1002/ghg.2296
Mingjun Zou, Zibin Ding, Yiyi Cheng, Linlin Yao, Yue Sun, Keying Wang

Geological sequestration of carbon dioxide (CO2) is an effective method to reduce greenhouse gases and an important technology for carbon neutralization. Among all geological sequestration sites, coal reservoirs are potentially effective and practicable. The Xiangzhong Depression of Hunan Province of China is selected as the research area, and the coal seam of Longtan Formation is the target reservoir in this paper. CO2-enhanced coalbed methane (CO2-ECBM) and CO2 sequestration capacity are both simulated according to the laboratory experiments on reservoir parameters. During simulation, four production wells and one injection well were designed, and the simulation process can be divided into two stages: CO2-ECBM and CO2 geological storage. The CO2-ECBM stage refers to CO2 injection for increasing methane production, and the CO2 geological storage stage aims to predict the CO2 sequestration capacity. After that, sensitivity analyses of sequestration effect are carried out. During the simulation, when maintaining a constant pressure injection of CO2 under the original conditions of 0.01 mD permeability, 9% porosity, and 1.47 MPa reservoir methane pressure, the total storage amount is only 0.14 × 106 m3. However, the storage amount increases significantly to 6.62 × 106 m3 if the permeability increases to 1.5 mD. Orthogonal simulation indicates that permeability has the greatest impact on CO2 sequestration. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.

二氧化碳(CO2)的地质封存是减少温室气体的有效方法,也是碳中和的一项重要技术。在所有地质封存地点中,煤炭储层具有潜在的有效性和可行性。本文选择中国湖南省湘中坳陷为研究区域,以龙潭地层煤层为目标储层。根据储层参数的实验室实验,模拟了二氧化碳强化煤层气(CO2-ECBM)和二氧化碳封存能力。在模拟过程中,设计了四口生产井和一口注入井,模拟过程可分为两个阶段:CO2-ECBM 和 CO2 地质封存两个阶段。CO2-ECBM 阶段指的是注入 CO2 以增加甲烷产量,而 CO2 地质封存阶段旨在预测 CO2 封存能力。然后,对封存效果进行敏感性分析。在模拟过程中,在渗透率 0.01 mD、孔隙度 9%、储层甲烷压力 1.47 MPa 的原始条件下,保持恒压注入 CO2 时,总封存量仅为 0.14 × 106 m3。然而,如果渗透率增加到 1.5 mD,储量就会大幅增加到 6.62 × 106 m3。正交模拟表明,渗透率对二氧化碳封存的影响最大。© 2024 化学工业协会和约翰-威利父子有限公司版权所有。
{"title":"Numerical simulation of CO2 geological sequestration and CO2-ECBM in coal beds of Longtan Formation, Xiangzhong Depression, Hunan Province, China","authors":"Mingjun Zou,&nbsp;Zibin Ding,&nbsp;Yiyi Cheng,&nbsp;Linlin Yao,&nbsp;Yue Sun,&nbsp;Keying Wang","doi":"10.1002/ghg.2296","DOIUrl":"10.1002/ghg.2296","url":null,"abstract":"<p>Geological sequestration of carbon dioxide (CO<sub>2</sub>) is an effective method to reduce greenhouse gases and an important technology for carbon neutralization. Among all geological sequestration sites, coal reservoirs are potentially effective and practicable. The Xiangzhong Depression of Hunan Province of China is selected as the research area, and the coal seam of Longtan Formation is the target reservoir in this paper. CO<sub>2</sub>-enhanced coalbed methane (CO<sub>2</sub>-ECBM) and CO<sub>2</sub> sequestration capacity are both simulated according to the laboratory experiments on reservoir parameters. During simulation, four production wells and one injection well were designed, and the simulation process can be divided into two stages: CO<sub>2</sub>-ECBM and CO<sub>2</sub> geological storage. The CO<sub>2</sub>-ECBM stage refers to CO<sub>2</sub> injection for increasing methane production, and the CO<sub>2</sub> geological storage stage aims to predict the CO<sub>2</sub> sequestration capacity. After that, sensitivity analyses of sequestration effect are carried out. During the simulation, when maintaining a constant pressure injection of CO<sub>2</sub> under the original conditions of 0.01 mD permeability, 9% porosity, and 1.47 MPa reservoir methane pressure, the total storage amount is only 0.14 × 10<sup>6</sup> m<sup>3</sup>. However, the storage amount increases significantly to 6.62 × 10<sup>6</sup> m<sup>3</sup> if the permeability increases to 1.5 mD. Orthogonal simulation indicates that permeability has the greatest impact on CO<sub>2</sub> sequestration. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 5","pages":"743-759"},"PeriodicalIF":2.7,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141920721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leakage diffusion and safety assessment of CO2 pipeline transportation flange based on CFD simulation 基于 CFD 模拟的二氧化碳管道运输法兰泄漏扩散与安全评估
IF 2.7 4区 环境科学与生态学 Q3 ENERGY & FUELS Pub Date : 2024-08-08 DOI: 10.1002/ghg.2301
Weiqiu Huang, Yilan Xiao, Xufei Li, Zhou Ning

Carbon capture and storage technologies play crucial roles in mitigating atmospheric greenhouse gases (GHGs). Pipeline transportation is the primary method of CO2 transportation, making pipeline safety a priority. In this study, Fluent software was used to create a model for annular edge leakage flanges, which significantly differs from the traditional pinhole leakage model. This study aims to examine the impact of CO2 pipeline flow and pressure on the diffusion of gas leaking from the flange and to develop a precise correlation between the diffusion distance and substance concentration. The results indicate that an increase in flow and pressure intensifies the diffusion of the flange leakage. Specifically, for a leakage lasting 96 s at flow rates of 0.7 and 10 m3/h, the diffusion ranges for the 5% concentration alarm threshold are 0.47 and 2.86 m, respectively. Furthermore, at a speed of 10 m/s and a pressure of 0.4 MPa, the diffusion ranges for 5 and 2% alarms are similar, spanning from 0.33 to 0.35 m. This study provides theoretical support and technical improvements to ensure the safe operation of pipelines. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.

碳捕集与封存技术在减缓大气温室气体(GHGs)方面发挥着至关重要的作用。管道运输是二氧化碳运输的主要方式,因此管道安全成为首要任务。本研究使用 Fluent 软件创建了环形边缘泄漏法兰模型,该模型与传统的针孔泄漏模型有很大不同。本研究旨在考察二氧化碳管道流量和压力对法兰泄漏气体扩散的影响,并建立扩散距离与物质浓度之间的精确相关关系。结果表明,流量和压力的增加会加剧法兰泄漏的扩散。具体来说,在流量为 0.7 和 10 m3/h 时,泄漏持续时间为 96 s,浓度为 5%的报警阈值的扩散距离分别为 0.47 和 2.86 m。此外,在速度为 10 m/s 和压力为 0.4 MPa 时,5% 和 2% 警报的扩散范围相似,分别为 0.33 至 0.35 m。© 2024 化学工业协会和约翰威利父子有限公司版权所有。
{"title":"Leakage diffusion and safety assessment of CO2 pipeline transportation flange based on CFD simulation","authors":"Weiqiu Huang,&nbsp;Yilan Xiao,&nbsp;Xufei Li,&nbsp;Zhou Ning","doi":"10.1002/ghg.2301","DOIUrl":"10.1002/ghg.2301","url":null,"abstract":"<p>Carbon capture and storage technologies play crucial roles in mitigating atmospheric greenhouse gases (GHGs). Pipeline transportation is the primary method of CO<sub>2</sub> transportation, making pipeline safety a priority. In this study, Fluent software was used to create a model for annular edge leakage flanges, which significantly differs from the traditional pinhole leakage model. This study aims to examine the impact of CO<sub>2</sub> pipeline flow and pressure on the diffusion of gas leaking from the flange and to develop a precise correlation between the diffusion distance and substance concentration. The results indicate that an increase in flow and pressure intensifies the diffusion of the flange leakage. Specifically, for a leakage lasting 96 s at flow rates of 0.7 and 10 m<sup>3</sup>/h, the diffusion ranges for the 5% concentration alarm threshold are 0.47 and 2.86 m, respectively. Furthermore, at a speed of 10 m/s and a pressure of 0.4 MPa, the diffusion ranges for 5 and 2% alarms are similar, spanning from 0.33 to 0.35 m. This study provides theoretical support and technical improvements to ensure the safe operation of pipelines. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 5","pages":"728-742"},"PeriodicalIF":2.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141927437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CO2 solubility in aqueous solution of salts: Experimental study and thermodynamic modelling 二氧化碳在盐类水溶液中的溶解度:实验研究和热力学模型
IF 2.7 4区 环境科学与生态学 Q3 ENERGY & FUELS Pub Date : 2024-08-07 DOI: 10.1002/ghg.2298
Ramin Mousavi, Antonin Chapoy, Rod Burgass

There are many economic obstacles and complex engineering problems associated with CO2 capture and storage in saline aquifers that need to be addressed. Overcoming such challenges requires precise knowledge on the fluid phase equilibria of CO2-brine systems. Having accurate CO2 solubility data over a wide range of temperature and pressure can greatly assist in resolving these obstacles by improving the performance and accuracy of the thermodynamic modeling and subsequent CCS engineering success.

CO2 solubility in pure water and NaCl solutions has been widely studied in the literature, however, there is a lack of data on CO2 solubility at lower temperatures (below 298 K). Furthermore, limited phase equilibria data are available for CO2 solubility in CaCl2, MgCl2, and KCl solutions at elevated temperatures (i.e., T > 323.15 K).

In this work, the phase equilibria of CO2 and brine systems are investigated experimentally and theoretically. In this study, solubilities of CO2 in pure water and various concentrations of NaCl (10, 15, 20, and 22 wt%), KCl (10, 15, and 22 wt%), CaCl2 (7.5, 10, 15.7, and 23.4 wt%), and MgCl2 (6.7, 11, 18, and 29 wt%) aqueous solutions are reported. All CO2 solubilities were measures at 323.15, 373.15, and 423.15 K and over various pressure ranges, while solubilities in 10 and 20 wt% NaCl aqueous solutions were also measured over the temperature range of 263 to 298 K and pressures up to the hydrate dissociation pressure of each system. Equation of state modelling using the PC-SAFT and the Cubic Plus Association equations of state, is performed in the theoretical part of the study to validate the measured solubility data. © 2024 The Author(s). Greenhouse Gases: Science and Technology published by Society of Chemical Industry and John Wiley & Sons Ltd.

在含盐含水层中捕获和封存二氧化碳有许多经济障碍和复杂的工程问题需要解决。要克服这些挑战,需要精确了解二氧化碳-盐水系统的流体相平衡。在广泛的温度和压力范围内掌握准确的二氧化碳溶解度数据,可以提高热力学建模的性能和准确性,并在随后的 CCS 工程中取得成功,从而极大地帮助解决这些障碍。此外,关于 CO2 在 CaCl2、MgCl2 和 KCl 溶液中的溶解度,在高温(即 T > 323.15 K)下的相平衡数据有限。本研究报告了二氧化碳在纯水和不同浓度的氯化钠(10、15、20 和 22 wt%)、氯化钾(10、15 和 22 wt%)、氯化钙(7.5、10、15.7 和 23.4 wt%)和氯化镁(6.7、11、18 和 29 wt%)水溶液中的溶解度。所有二氧化碳溶解度都是在 323.15、373.15 和 423.15 K 及不同压力范围内测量的,而 10 和 20 wt% 氯化钠水溶液中的溶解度也是在 263 至 298 K 的温度范围内以及每个系统的水合物解离压力以下的压力范围内测量的。研究的理论部分使用 PC-SAFT 和立方加联结状态方程进行状态方程建模,以验证测量的溶解度数据。© 2024 作者姓名温室气体:由化学工业协会和 John Wiley & Sons Ltd. 出版。
{"title":"CO2 solubility in aqueous solution of salts: Experimental study and thermodynamic modelling","authors":"Ramin Mousavi,&nbsp;Antonin Chapoy,&nbsp;Rod Burgass","doi":"10.1002/ghg.2298","DOIUrl":"https://doi.org/10.1002/ghg.2298","url":null,"abstract":"<p>There are many economic obstacles and complex engineering problems associated with CO<sub>2</sub> capture and storage in saline aquifers that need to be addressed. Overcoming such challenges requires precise knowledge on the fluid phase equilibria of CO<sub>2-</sub>brine systems. Having accurate CO<sub>2</sub> solubility data over a wide range of temperature and pressure can greatly assist in resolving these obstacles by improving the performance and accuracy of the thermodynamic modeling and subsequent CCS engineering success.</p><p>CO<sub>2</sub> solubility in pure water and NaCl solutions has been widely studied in the literature, however, there is a lack of data on CO<sub>2</sub> solubility at lower temperatures (below 298 K). Furthermore, limited phase equilibria data are available for CO<sub>2</sub> solubility in CaCl<sub>2</sub>, MgCl<sub>2</sub>, and KCl solutions at elevated temperatures (i.e., <i>T</i> &gt; 323.15 K).</p><p>In this work, the phase equilibria of CO<sub>2</sub> and brine systems are investigated experimentally and theoretically. In this study, solubilities of CO<sub>2</sub> in pure water and various concentrations of NaCl (10, 15, 20, and 22 wt%), KCl (10, 15, and 22 wt%), CaCl<sub>2</sub> (7.5, 10, 15.7, and 23.4 wt%), and MgCl<sub>2</sub> (6.7, 11, 18, and 29 wt%) aqueous solutions are reported. All CO<sub>2</sub> solubilities were measures at 323.15, 373.15, and 423.15 K and over various pressure ranges, while solubilities in 10 and 20 wt% NaCl aqueous solutions were also measured over the temperature range of 263 to 298 K and pressures up to the hydrate dissociation pressure of each system. Equation of state modelling using the PC-SAFT and the Cubic Plus Association equations of state, is performed in the theoretical part of the study to validate the measured solubility data. © 2024 The Author(s). <i>Greenhouse Gases: Science and Technology</i> published by Society of Chemical Industry and John Wiley &amp; Sons Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 5","pages":"791-828"},"PeriodicalIF":2.7,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ghg.2298","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Greenhouse Gases: Science and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1