Investigation and evaluation methods of shallow geothermal energy considering the influences of fracture water flow

IF 2.9 2区 地球科学 Q3 ENERGY & FUELS Geothermal Energy Pub Date : 2023-08-19 DOI:10.1186/s40517-023-00267-1
Fengqiang Deng, Peng Pei, Yonglin Ren, Tingting Luo, Yixia Chen
{"title":"Investigation and evaluation methods of shallow geothermal energy considering the influences of fracture water flow","authors":"Fengqiang Deng,&nbsp;Peng Pei,&nbsp;Yonglin Ren,&nbsp;Tingting Luo,&nbsp;Yixia Chen","doi":"10.1186/s40517-023-00267-1","DOIUrl":null,"url":null,"abstract":"<div><p>The energy replenishment and heat convection induced by fracture water flowing through the rock mass impact the shallow geothermal energy occurrence, transfer and storage mechanisms in it. In this article, a suitability evaluation and categorization system is proposed by including judgement indexes that are more closely aligned with the actual hydrogeological conditions in fracture developed regions; an assessment approach of regional shallow geothermal energy is proposed by coupling the influences of fracture water into the calculation methods of geothermal capacity, thermal balance and heat transfer rate. Finally, by taking two typical fracture aperture distributions as examples, the impacts of fracture water on the investigation and evaluation of shallow geothermal energy are quantitatively analyzed. Although the fracture apertures only share 1.68% and 0.98% of the total length of a borehole, respectively, in the two examples, the fracture water convection contributes up to 11.01% and 6.81% of the total heat transfer rate; and the energy replenishment potential brought by the fracture water is equivalent to the total heat extraction of 262 boreholes. A single wide aperture fracture can dominate the aforementioned impacts. The research results can support more accurate evaluation and efficient recovery of shallow geothermal energy in fracture developed regions.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00267-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-023-00267-1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The energy replenishment and heat convection induced by fracture water flowing through the rock mass impact the shallow geothermal energy occurrence, transfer and storage mechanisms in it. In this article, a suitability evaluation and categorization system is proposed by including judgement indexes that are more closely aligned with the actual hydrogeological conditions in fracture developed regions; an assessment approach of regional shallow geothermal energy is proposed by coupling the influences of fracture water into the calculation methods of geothermal capacity, thermal balance and heat transfer rate. Finally, by taking two typical fracture aperture distributions as examples, the impacts of fracture water on the investigation and evaluation of shallow geothermal energy are quantitatively analyzed. Although the fracture apertures only share 1.68% and 0.98% of the total length of a borehole, respectively, in the two examples, the fracture water convection contributes up to 11.01% and 6.81% of the total heat transfer rate; and the energy replenishment potential brought by the fracture water is equivalent to the total heat extraction of 262 boreholes. A single wide aperture fracture can dominate the aforementioned impacts. The research results can support more accurate evaluation and efficient recovery of shallow geothermal energy in fracture developed regions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑裂缝水流影响的浅层地热能调查评价方法
裂隙水流经岩体引起的能量补充和热对流影响着岩体中浅层地热能的赋存、传递和储存机制。在裂缝发育地区,通过纳入更贴近实际水文地质条件的评价指标,提出了适宜性评价分类体系;将裂缝水的影响与地热能、热平衡和换热率的计算方法相结合,提出了一种区域浅层地热能评价方法。最后,以两种典型裂缝孔径分布为例,定量分析了裂缝水对浅层地热能调查评价的影响。虽然裂缝孔径分别只占井眼总长度的1.68%和0.98%,但在两个实例中,裂缝水对流对总换热率的贡献分别高达11.01%和6.81%;裂缝水带来的能量补充潜力相当于262个钻孔的总抽热量。单个大孔径裂缝可以主导上述影响。研究结果为裂缝发育地区浅层地热能的准确评价和高效开采提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geothermal Energy
Geothermal Energy Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍: Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.
期刊最新文献
Feasibility of coaxial deep borehole heat exchangers in southern California Controls of low injectivity caused by interaction of reservoir and clogging processes in a sedimentary geothermal aquifer (Mezőberény, Hungary) Density of pure and mixed NaCl and CaCl2 aqueous solutions at 293 K to 353 K and 0.1 MPa: an integrated comparison of analytical and numerical data Modeling unobserved geothermal structures using a physics-informed neural network with transfer learning of prior knowledge Methods of grout quality measurement in borehole exchangers for heat pumps and their rehabilitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1