{"title":"Risk prediction for cut-ins using multi-driver simulation data and machine learning algorithms: A comparison among decision tree, GBDT and LSTM","authors":"Tianyang Luo, Junhua Wang, Ting Fu, Qiangqiang Shangguan, Shou'en Fang","doi":"10.1016/j.ijtst.2022.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>The cut-ins (one kind of lane-changing behaviors) have result in severe safety issues, especially at the entrances and exits of urban expressways. Risk prediction and characteristics analysis of cut-ins are part of the essential research for advanced in-vehicle technologies which can reduce crash occurrences. This paper makes some efforts on these purposes. In this paper, twenty-four participants were recruited to conduct the experiments of multi-driver simulation for risky driving data collection. The surrogate measures, Time Exposure Time-to-Collision (TET) and Time Integrated Time-to-collision (TIT) were employed to quantify the risk of cut-ins, then k-means clustering was applied for risk classification of 3 levels. Multiple candidate variables of two kinds were extracted including 10 behavioral variables and 7 driver trait variables. Based on these variables, three prediction models including decision tree (DT), gradient boosting decision tree (GBDT) and long short-term memory (LSTM) are used for predicting the risks of cut-ins. Results from data validity verification show that the data collected from multi-driver simulation experiments is valid compared with real-world data. From results of risk prediction models, the LSTM, with an overall accuracy of 87%, outperforms the GBDT (80.67%) and DT (76.9%). Despite this, this paper also concludes the merits of the DT over the GBDT and LSTM in variable explanation and the results of DT suggest that controlling the proper lane-changing gap and short duration of cut-ins can help reduce risks of cut-ins.</p></div>","PeriodicalId":52282,"journal":{"name":"International Journal of Transportation Science and Technology","volume":"12 3","pages":"Pages 862-877"},"PeriodicalIF":4.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Transportation Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2046043022001010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 3
Abstract
The cut-ins (one kind of lane-changing behaviors) have result in severe safety issues, especially at the entrances and exits of urban expressways. Risk prediction and characteristics analysis of cut-ins are part of the essential research for advanced in-vehicle technologies which can reduce crash occurrences. This paper makes some efforts on these purposes. In this paper, twenty-four participants were recruited to conduct the experiments of multi-driver simulation for risky driving data collection. The surrogate measures, Time Exposure Time-to-Collision (TET) and Time Integrated Time-to-collision (TIT) were employed to quantify the risk of cut-ins, then k-means clustering was applied for risk classification of 3 levels. Multiple candidate variables of two kinds were extracted including 10 behavioral variables and 7 driver trait variables. Based on these variables, three prediction models including decision tree (DT), gradient boosting decision tree (GBDT) and long short-term memory (LSTM) are used for predicting the risks of cut-ins. Results from data validity verification show that the data collected from multi-driver simulation experiments is valid compared with real-world data. From results of risk prediction models, the LSTM, with an overall accuracy of 87%, outperforms the GBDT (80.67%) and DT (76.9%). Despite this, this paper also concludes the merits of the DT over the GBDT and LSTM in variable explanation and the results of DT suggest that controlling the proper lane-changing gap and short duration of cut-ins can help reduce risks of cut-ins.