A Nonvolatile Compute-in-Memory Macro Using Voltage-Controlled MRAM and In Situ Magnetic-to-Digital Converter

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2023-03-17 DOI:10.1109/JXCDC.2023.3258431
Vinod Kurian Jacob;Jiyue Yang;Haoran He;Puneet Gupta;Kang L Wang;Sudhakar Pamarti
{"title":"A Nonvolatile Compute-in-Memory Macro Using Voltage-Controlled MRAM and In Situ Magnetic-to-Digital Converter","authors":"Vinod Kurian Jacob;Jiyue Yang;Haoran He;Puneet Gupta;Kang L Wang;Sudhakar Pamarti","doi":"10.1109/JXCDC.2023.3258431","DOIUrl":null,"url":null,"abstract":"Compute-in-memory (CIM) accelerator has become a popular solution to achieve high energy efficiency for deep learning applications in edge devices. Recent works have demonstrated CIM macros using nonvolatile memories [spin transfer torque (STT)-MRAM and resistive random access memory (RRAM)] to take advantages of their nonvolatility and high density. However, effective computation dynamic range is far lower than their static random access memory (SRAM)-CIM counterparts due to low device ON/ OFF ratio. In this work, we combine a nonvolatile memory based on a voltage-controlled magnetic tunneling junction (VC-MTJ) device, called voltage-controlled MRAM or VC-MRAM, and accurate switched-capacitor-based CIM using a novel in situ magnetic-to-digital converter (MDC). The VC-MTJ device has demonstrated \n<inline-formula> <tex-math>$10\\times $ </tex-math></inline-formula>\n lower write energy and switching time compared to STT-MRAM device and has comparable density, read energy, and read latency. The in situ MDCs embedded inside each VC-MRAM row convert magnetically stored weight information to CMOS logic levels and enable switched-capacitor-based multiply–accumulate (MAC) operation with accuracy comparable to the state-of-the-art SRAM-CIM. This article describes the schematic and layout level design of a VC-MRAM CIM macro in 28 nm. This is the first nonvolatile CIM design to enable analog MAC computation with 256 parallel rows turned ON simultaneously without degradation in dynamic range (< 1 LSB). Detailed circuit simulations including experimentally validated VC-MTJ compact models show \n<inline-formula> <tex-math>$1.5\\times $ </tex-math></inline-formula>\n higher energy efficiency and \n<inline-formula> <tex-math>$2\\times $ </tex-math></inline-formula>\n higher density compared to the state-of-the-art SRAM-based CIM.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/10138050/10075423.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10075423/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

Abstract

Compute-in-memory (CIM) accelerator has become a popular solution to achieve high energy efficiency for deep learning applications in edge devices. Recent works have demonstrated CIM macros using nonvolatile memories [spin transfer torque (STT)-MRAM and resistive random access memory (RRAM)] to take advantages of their nonvolatility and high density. However, effective computation dynamic range is far lower than their static random access memory (SRAM)-CIM counterparts due to low device ON/ OFF ratio. In this work, we combine a nonvolatile memory based on a voltage-controlled magnetic tunneling junction (VC-MTJ) device, called voltage-controlled MRAM or VC-MRAM, and accurate switched-capacitor-based CIM using a novel in situ magnetic-to-digital converter (MDC). The VC-MTJ device has demonstrated $10\times $ lower write energy and switching time compared to STT-MRAM device and has comparable density, read energy, and read latency. The in situ MDCs embedded inside each VC-MRAM row convert magnetically stored weight information to CMOS logic levels and enable switched-capacitor-based multiply–accumulate (MAC) operation with accuracy comparable to the state-of-the-art SRAM-CIM. This article describes the schematic and layout level design of a VC-MRAM CIM macro in 28 nm. This is the first nonvolatile CIM design to enable analog MAC computation with 256 parallel rows turned ON simultaneously without degradation in dynamic range (< 1 LSB). Detailed circuit simulations including experimentally validated VC-MTJ compact models show $1.5\times $ higher energy efficiency and $2\times $ higher density compared to the state-of-the-art SRAM-based CIM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用压控MRAM和原位磁-数转换器的非易失性内存宏
内存中计算(CIM)加速器已成为边缘设备中深度学习应用实现高能效的流行解决方案。最近的研究表明,CIM宏使用非易失性存储器[自旋转移扭矩(STT)-MRAM和电阻随机存取存储器(RRAM)]来利用其非易失性和高密度的优势。然而,由于器件的开/关比较低,其有效计算动态范围远低于静态随机存取存储器(SRAM)-CIM。在这项工作中,我们结合了基于压控磁隧道结(VC-MTJ)器件的非易失性存储器,称为压控MRAM或VC-MRAM,以及使用新型原位磁数字转换器(MDC)的基于精确开关电容的CIM。与STT-MRAM器件相比,VC-MTJ器件的写入能量和开关时间降低了10倍,并且具有相当的密度、读取能量和读取延迟。嵌入在每个VC-MRAM行中的原位mdc将磁性存储的重量信息转换为CMOS逻辑电平,并实现基于开关电容的乘法累积(MAC)操作,其精度可与最先进的SRAM-CIM相媲美。本文介绍了一种28纳米的VC-MRAM CIM宏的原理图和布局级设计。这是第一个非易失性CIM设计,可以在256个并行行同时开启的情况下实现模拟MAC计算,而不会降低动态范围(< 1 LSB)。包括实验验证的VC-MTJ紧凑型模型在内的详细电路模拟显示,与最先进的基于sram的CIM相比,能效提高1.5倍,密度提高2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
期刊最新文献
Design Considerations for Sub-1-V 1T1C FeRAM Memory Circuits Heterogeneous Integration Technologies for Artificial Intelligence Applications Scaling Logic Area With Multitier Standard Cells Accuracy Improvement With Weight Mapping Strategy and Output Transformation for STT-MRAM-Based Computing-in-Memory Energy-/Carbon-Aware Evaluation and Optimization of 3-D IC Architecture With Digital Compute-in-Memory Designs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1