Wenhao Zhu, Lujun Li, Jingping Yang, Jiehua Xie, Liulei Sun
{"title":"Asymptotic subadditivity/superadditivity of Value-at-Risk under tail dependence","authors":"Wenhao Zhu, Lujun Li, Jingping Yang, Jiehua Xie, Liulei Sun","doi":"10.1111/mafi.12393","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a new method for discussing the asymptotic subadditivity/superadditivity of Value-at-Risk (VaR) for multiple risks. We consider the asymptotic subadditivity and superadditivity properties of VaR for multiple risks whose copula admits a stable tail dependence function (STDF). For the purpose, a marginal region is defined by the marginal distributions of the multiple risks, and a stochastic order named tail concave order is presented for comparing individual tail risks. We prove that asymptotic subadditivity of VaR holds when individual risks are smaller than regularly varying (RV) random variables with index −1 under the tail concave order. We also provide sufficient conditions for VaR being asymptotically superadditive. For two multiple risks sharing the same copula function and satisfying the tail concave order, a comparison result on the asymptotic subadditivity/superadditivity of VaR is given. Asymptotic diversification ratios for RV and log regularly varying (LRV) margins with specific copula structures are obtained. Empirical analysis on financial data is provided for highlighting our results.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":"33 4","pages":"1314-1369"},"PeriodicalIF":1.6000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12393","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a new method for discussing the asymptotic subadditivity/superadditivity of Value-at-Risk (VaR) for multiple risks. We consider the asymptotic subadditivity and superadditivity properties of VaR for multiple risks whose copula admits a stable tail dependence function (STDF). For the purpose, a marginal region is defined by the marginal distributions of the multiple risks, and a stochastic order named tail concave order is presented for comparing individual tail risks. We prove that asymptotic subadditivity of VaR holds when individual risks are smaller than regularly varying (RV) random variables with index −1 under the tail concave order. We also provide sufficient conditions for VaR being asymptotically superadditive. For two multiple risks sharing the same copula function and satisfying the tail concave order, a comparison result on the asymptotic subadditivity/superadditivity of VaR is given. Asymptotic diversification ratios for RV and log regularly varying (LRV) margins with specific copula structures are obtained. Empirical analysis on financial data is provided for highlighting our results.
期刊介绍:
Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems.
The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.