J. Sachs, P. Bunch, A. P. Sweeney, K. Hiatt, M. Benayoun, T. G. West
{"title":"Is It Intracranial Hemorrhage? A Case-Based Approach to Confident Determination Using Dual-Energy CT","authors":"J. Sachs, P. Bunch, A. P. Sweeney, K. Hiatt, M. Benayoun, T. G. West","doi":"10.3174/ng.2200008","DOIUrl":null,"url":null,"abstract":"Differentiating acute hemorrhage from hyperattenuating mimics remains a common problem in neuroradiology practice. High atomic number materials such as iodine, calcium, and silicone oil can be similar in attenuation to acute blood products, depending on their concentration. Dual-energy\n CT allows differentiation of hemorrhage from these high atomic number materials because of the differential absorption of x-ray photons at different incident energies. The primary purpose of this case review is to illustrate how to confidently and efficiently use 190-keV virtual monoenergetic\n images and material decomposition maps in routine neuroradiology practice when the differential diagnosis includes hemorrhage versus a high atomic number hyperattenuating mimic. We review the underlying physics of dual-energy CT, the primary output of dual-energy postprocessing, as well as\n pitfalls.Learning Objective: To learn how to use dual-energy CT to confidently and efficiently differentiate acute hemorrhage and hyperattenuating mimics (eg, calcification or iodinated contrast)","PeriodicalId":36193,"journal":{"name":"Neurographics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurographics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3174/ng.2200008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Differentiating acute hemorrhage from hyperattenuating mimics remains a common problem in neuroradiology practice. High atomic number materials such as iodine, calcium, and silicone oil can be similar in attenuation to acute blood products, depending on their concentration. Dual-energy
CT allows differentiation of hemorrhage from these high atomic number materials because of the differential absorption of x-ray photons at different incident energies. The primary purpose of this case review is to illustrate how to confidently and efficiently use 190-keV virtual monoenergetic
images and material decomposition maps in routine neuroradiology practice when the differential diagnosis includes hemorrhage versus a high atomic number hyperattenuating mimic. We review the underlying physics of dual-energy CT, the primary output of dual-energy postprocessing, as well as
pitfalls.Learning Objective: To learn how to use dual-energy CT to confidently and efficiently differentiate acute hemorrhage and hyperattenuating mimics (eg, calcification or iodinated contrast)