Investigation of the effect of Graphene Nanoplatelet content on Flexural Behavior, Surface Roughness and Water Absorption of a Graphene Nanoplatelets Reinforced Epoxy Nanocomposites

Q4 Materials Science Journal of Surface Science and Technology Pub Date : 2022-05-12 DOI:10.18311/jsst/2021/27393
A. Kesavulu, A. Mohanty
{"title":"Investigation of the effect of Graphene Nanoplatelet content on Flexural Behavior, Surface Roughness and Water Absorption of a Graphene Nanoplatelets Reinforced Epoxy Nanocomposites","authors":"A. Kesavulu, A. Mohanty","doi":"10.18311/jsst/2021/27393","DOIUrl":null,"url":null,"abstract":"In the present work, the effect of Graphene nanoPlatelets (GnP) content on the flexural, surface roughness, and water absorption behavior of a GnP reinforced epoxy composite was investigated. Different wt.% of GnP (0.25, 0.5, 0.75, and 1 wt.%) was added into the epoxy matrix through the sonication method followed by the ball milling. The results indicate a significant enhancement in the flexural properties of the epoxy nanocomposite with the addition of GnP in the epoxy matrix. The optimum enhancement in the properties was obtained at 0.25 wt.% GnP incorporated epoxy composites. The increase in flexural strength and flexural modulus results were noticed as 42.7% and 49.2% when compared with neat epoxy. The surface roughness value for the loading of 0.25 wt.% of GnP into the epoxy showed a drop of 48.7% when compared with that of the neat epoxy sample. The loading of 0.25 wt.% of GnP into the epoxy also reduces the water absorption from 0.125% for the neat epoxy sample to 0.067% for the composite sample. The Scanning Electron Microscope (SEM) images of the fractured surface (flexural samples) of the GnP embedded epoxy composites show the river like pattern, which is the result of the better dispersion of the GnP in the epoxy matrix and thus shows improvement in flexural behaviour of such composite materials.","PeriodicalId":17031,"journal":{"name":"Journal of Surface Science and Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/jsst/2021/27393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

In the present work, the effect of Graphene nanoPlatelets (GnP) content on the flexural, surface roughness, and water absorption behavior of a GnP reinforced epoxy composite was investigated. Different wt.% of GnP (0.25, 0.5, 0.75, and 1 wt.%) was added into the epoxy matrix through the sonication method followed by the ball milling. The results indicate a significant enhancement in the flexural properties of the epoxy nanocomposite with the addition of GnP in the epoxy matrix. The optimum enhancement in the properties was obtained at 0.25 wt.% GnP incorporated epoxy composites. The increase in flexural strength and flexural modulus results were noticed as 42.7% and 49.2% when compared with neat epoxy. The surface roughness value for the loading of 0.25 wt.% of GnP into the epoxy showed a drop of 48.7% when compared with that of the neat epoxy sample. The loading of 0.25 wt.% of GnP into the epoxy also reduces the water absorption from 0.125% for the neat epoxy sample to 0.067% for the composite sample. The Scanning Electron Microscope (SEM) images of the fractured surface (flexural samples) of the GnP embedded epoxy composites show the river like pattern, which is the result of the better dispersion of the GnP in the epoxy matrix and thus shows improvement in flexural behaviour of such composite materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
石墨烯纳米片含量对石墨烯纳米片增强环氧复合材料弯曲性能、表面粗糙度和吸水性影响的研究
在本工作中,研究了石墨烯纳米血小板(GnP)含量对GnP增强环氧复合材料的弯曲、表面粗糙度和吸水行为的影响。通过超声处理法和球磨将不同重量%的GnP(0.25、0.5、0.75和1重量%)加入到环氧树脂基体中。结果表明,在环氧树脂基体中添加GnP显著提高了环氧树脂纳米复合材料的弯曲性能。性能的最佳增强是在0.25wt.%掺入GnP的环氧树脂复合材料中获得的。与纯环氧树脂相比,弯曲强度和弯曲模量结果分别提高了42.7%和49.2%。当将0.25wt.%的GnP加载到环氧树脂中时,与纯环氧树脂样品相比,表面粗糙度值显示出48.7%的下降。将0.25wt.%的GnP加载到环氧树脂中也将吸水率从纯环氧树脂样品的0.125%降低到复合材料样品的0.067%。GnP嵌入环氧树脂复合材料的断裂表面(弯曲样品)的扫描电子显微镜(SEM)图像显示了河流状图案,这是GnP在环氧树脂基体中更好分散的结果,因此显示了这种复合材料的弯曲性能的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: The Indian Society for Surface Science and Technology is an organization for the cultivation, interaction and dissemination of knowledge in the field of surface science and technology. It also strives to promote Industry-Academia interaction
期刊最新文献
Revealing melt-vapor-powder interaction towards laser powder bed fusion process via DEM-CFD coupled model Progress and challenges in energy storage and utilization via ammonia Deposition of DLC film on the inner surface of N80 pipeline by hollow cathode PECVD Improving activity and barrier properties of epoxy modified polyurethane coating with in-situ polymerized polypyrrole functionalized graphene oxide Machined surface formation and integrity control technology of SiCp/Al composites: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1