{"title":"GA-optimized neural network for forecasting the geomagnetic storm index","authors":"P. Jorquera, J. A. Lazzús, P. Rojas","doi":"10.22201/igeof.00167169p.2018.57.4.2104","DOIUrl":null,"url":null,"abstract":"Se desarrolló un método que combina una red neuronal artificial y un algoritmo genético (ANN+GA) con el fin de pronosticar el índice de tiempo de perturbación de tormenta (Dst). A partir de esta técnica, la ANN fue optimizada por GA para actualizar los pesos de la ANN y para pronosticar el índice Dst a corto plazo de 1 a 6 horas de antelación usando los valores de la serie temporal del índice Dst y del índice de electrojet auroral (AE). La base de datos utilizada contiene 233,760 datos de índices geomagnéticos por hora desde 00 UT del 01 de enero de 1990 hasta las 23 UT del 31 de agosto de 2016. Se analizaron diferentes topologías de ANN y se seleccionó la arquitectura óptima. Se encontró que el método propuesto ANN+GA puede ser adecuadamente entrenado para pronosticar Dst (t+1 a t+6) con una precisión aceptable (con errores cuadrático medio RMSE?10nT y coeficientes de correlación R?0.9), y que los índices geomagnéticos utilizados tienen efectos influyentes en la buena capacidad de entrenamiento y predicción de la red elegida. Los resultados muestran una buena aproximación entre las variaciones medidas y modeladas de Dst tanto en la fase principal como en la fase de recuperación de una tormenta geomagnética.","PeriodicalId":12624,"journal":{"name":"Geofisica Internacional","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofisica Internacional","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.22201/igeof.00167169p.2018.57.4.2104","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 3
Abstract
Se desarrolló un método que combina una red neuronal artificial y un algoritmo genético (ANN+GA) con el fin de pronosticar el índice de tiempo de perturbación de tormenta (Dst). A partir de esta técnica, la ANN fue optimizada por GA para actualizar los pesos de la ANN y para pronosticar el índice Dst a corto plazo de 1 a 6 horas de antelación usando los valores de la serie temporal del índice Dst y del índice de electrojet auroral (AE). La base de datos utilizada contiene 233,760 datos de índices geomagnéticos por hora desde 00 UT del 01 de enero de 1990 hasta las 23 UT del 31 de agosto de 2016. Se analizaron diferentes topologías de ANN y se seleccionó la arquitectura óptima. Se encontró que el método propuesto ANN+GA puede ser adecuadamente entrenado para pronosticar Dst (t+1 a t+6) con una precisión aceptable (con errores cuadrático medio RMSE?10nT y coeficientes de correlación R?0.9), y que los índices geomagnéticos utilizados tienen efectos influyentes en la buena capacidad de entrenamiento y predicción de la red elegida. Los resultados muestran una buena aproximación entre las variaciones medidas y modeladas de Dst tanto en la fase principal como en la fase de recuperación de una tormenta geomagnética.
期刊介绍:
Geofísica internacional is a quarterly scientific journal that publishes original papers that contain topics that are interesting for the geophysical community. The journal publishes research and review articles, brief notes and reviews books about seismology, volcanology, spacial sciences, hydrology and exploration, paleomagnetism and tectonic, and physical oceanography.