IMPLEMENTASI FUZZY C-MEAN DAN ALGORITMA PARTICLE SWARM OPTIMIZATION UNTUK CLUSTERING KABUPATEN/KOTA DI INDONESIA BERDASARKAN INDIKATOR INDEKS PEMBANGUNAN MANUSIA

I. Dwiguna, G. Gandhiadi, L. Harini
{"title":"IMPLEMENTASI FUZZY C-MEAN DAN ALGORITMA PARTICLE SWARM OPTIMIZATION UNTUK CLUSTERING KABUPATEN/KOTA DI INDONESIA BERDASARKAN INDIKATOR INDEKS PEMBANGUNAN MANUSIA","authors":"I. Dwiguna, G. Gandhiadi, L. Harini","doi":"10.24843/mtk.2022.v11.i03.p380","DOIUrl":null,"url":null,"abstract":"This research is aimed to determine conduct clustering in accordance with the conditions of districts / cities throughout Indonesia based on the IPM indicator and to determine the performance comparison of Fuzzy C-Means using particle swarm optimization compared to ordinary fuzzy c mean. The study uses 514 district / city data in Indonesia based on four IPM indicators. The research show 4 clusters that describe the condition of the Indonesian region and based on the results of cluster validation shows that there are differences in the ordinary Fuzzy C-Means mean algorithm and Fuzzy C-Means using particle swarm optimization.","PeriodicalId":11600,"journal":{"name":"E-Jurnal Matematika","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"E-Jurnal Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24843/mtk.2022.v11.i03.p380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This research is aimed to determine conduct clustering in accordance with the conditions of districts / cities throughout Indonesia based on the IPM indicator and to determine the performance comparison of Fuzzy C-Means using particle swarm optimization compared to ordinary fuzzy c mean. The study uses 514 district / city data in Indonesia based on four IPM indicators. The research show 4 clusters that describe the condition of the Indonesian region and based on the results of cluster validation shows that there are differences in the ordinary Fuzzy C-Means mean algorithm and Fuzzy C-Means using particle swarm optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
本研究的目的是基于IPM指标,确定根据印度尼西亚各地区的/城市的情况进行聚类,并确定使用粒子群优化的模糊c - means与普通模糊c - means的性能比较。该研究基于四个IPM指标,使用了印度尼西亚514个地区/城市的数据。研究得到了描述印尼地区情况的4个聚类,基于聚类验证的结果表明,普通的模糊C-Means均值算法与使用粒子群优化的模糊C-Means算法存在差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
34
审稿时长
24 weeks
期刊最新文献
The Potential Impact of Agouti Related Peptide and Asprosin on Metabolic Parameters and Eating Behavior in Attention Deficit Hyperactivity Disorder. PENGELOMPOKKAN KABUPATEN DI PROVINSI JAWA TENGAH BERDASARKAN KARAKTERISTIK IKLIM MENGGUNAKAN FUZZY CLUSTERING Perhitungan Premi Asuransi Menggunakan Model Select Table Pada Asuransi Joint Life PENERAPAN MODEL INVENTORI PROBABILISTIK FUZZY MULTIOBJEKTIF PADA SISTEM PERSEDIAAN BUAH SALAK KAUSALITAS ANTARA ANXIETY, SOCIAL PHOBIA TERHADAP PEMAIN VIDEO GAME
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1