Automatic Control of an Asymmetric Fighter Aircraft Performing Supermanoeuvres

Q4 Engineering Advances in Military Technology Pub Date : 2020-07-28 DOI:10.3849/aimt.01314
Mukherjee, Goel, Sinha
{"title":"Automatic Control of an Asymmetric Fighter Aircraft Performing Supermanoeuvres","authors":"Mukherjee, Goel, Sinha","doi":"10.3849/aimt.01314","DOIUrl":null,"url":null,"abstract":": Centre-of-gravity (c.g.) of combat aircraft suffers significant lateral deviation due to asymmetric release of stores, leading to a highly nonlinear and coupled dynamics. Additional nonlinearity and coupling result when the aircraft attempts some supermanoeuvres under such conditions rendering nonlinear control implementation unavoidable. However, such controls depend on accurate onboard c.g information. The present paper proposes a novel neural network aided sliding mode based hybrid control scheme which does not require such an information. The neural controller is trained offline to compensate for the changed dynamics arising from the lateral mass asymmetry, while the sliding controller is designed for the intended manoeuvres under the nominal situation. Cobra and Herbst manoeuvres are simulated for various lateral c.g. movements to validate the scheme.","PeriodicalId":39125,"journal":{"name":"Advances in Military Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Military Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3849/aimt.01314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

: Centre-of-gravity (c.g.) of combat aircraft suffers significant lateral deviation due to asymmetric release of stores, leading to a highly nonlinear and coupled dynamics. Additional nonlinearity and coupling result when the aircraft attempts some supermanoeuvres under such conditions rendering nonlinear control implementation unavoidable. However, such controls depend on accurate onboard c.g information. The present paper proposes a novel neural network aided sliding mode based hybrid control scheme which does not require such an information. The neural controller is trained offline to compensate for the changed dynamics arising from the lateral mass asymmetry, while the sliding controller is designed for the intended manoeuvres under the nominal situation. Cobra and Herbst manoeuvres are simulated for various lateral c.g. movements to validate the scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非对称战斗机超机动自动控制
:作战飞机的重心(c.g)由于不对称的储存释放而遭受显著的横向偏差,导致高度非线性和耦合动力学。在这种情况下,当飞机进行一些超机动时,会产生额外的非线性和耦合,使得非线性控制不可避免。然而,这种控制依赖于准确的机载重力信息。本文提出了一种新的基于神经网络辅助滑模的混合控制方案,该方案不需要这些信息。神经控制器是离线训练的,以补偿侧向质量不对称引起的动力学变化,而滑动控制器是为标称情况下的预期操作而设计的。Cobra和Herbst演习模拟了各种横向c.g.运动,以验证该方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Military Technology
Advances in Military Technology Engineering-Civil and Structural Engineering
CiteScore
0.90
自引率
0.00%
发文量
11
审稿时长
12 weeks
期刊最新文献
Use of a Handheld Raman Spectrometer for Identification of Toxic Agents in Clandestine Laboratories Evaluating the Effectiveness of Assets Protection by Air Defense Means from Cruise Missiles Strikes Detection of Malicious Network Activity by Artificial Neural Network Estimation of Maximum Signal Strength for Satellite Tracking Based on the Extended Kalman Filter Rating of the mobility of Military Logistic Vehicles Used in the Polish Armed Forces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1