W. Monzel, Kyle Berglund, M. Kolel-Veetil, D. Simone, T. Gibson
{"title":"The evaluation of an inorganic-organic poly(carborane-siloxane-arylacetylene) hybrid resin system","authors":"W. Monzel, Kyle Berglund, M. Kolel-Veetil, D. Simone, T. Gibson","doi":"10.1177/09540083221140015","DOIUrl":null,"url":null,"abstract":"The realization of aerospace vehicle technologies demanding extreme service conditions is facilitated by the development of materials with greater oxidative stability at high temperatures. Thermal performance of polymer composites can be increased by incorporating a hybrid (organic-inorganic) resin as a thermal barrier coating. One such resin system, meta-poly (carborane-siloxane-arylacetylene) (m-PCSAA), developed by the U.S. Naval Research Laboratory, shows potential for such application and is further investigated in this work. The resin has a low viscosity (0.1 Pa s) with large processing window (2.5 h) from 100°C to 230°C. These processing characteristics are advantageous for infusion processes or the inclusion of fillers for coating applications. Curing was accomplished in two stages, corresponding to two exothermic reactions. After the first curing stage, the resin exhibits elastomeric behavior, and after the second curing stage is rigid with a high glass transition temperature (∼330°C). The materials exhibited high char yields (89%) in air at 1000°C and may be useful in space or for attritable technology. No cracks were observed during long-term service at 288°C, but significant degradation and cracking were observed after aging at 316°C. The materials exhibited high coefficients of thermal expansion; 186.9 and 168.6 μm/(m∙°C) after first and second curing stage respectively. Similar to epoxies and polyimides, the resin acquired up to 3% moisture at 70°C and 85% relative humidity.","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":"35 1","pages":"379 - 389"},"PeriodicalIF":1.8000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Performance Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09540083221140015","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The realization of aerospace vehicle technologies demanding extreme service conditions is facilitated by the development of materials with greater oxidative stability at high temperatures. Thermal performance of polymer composites can be increased by incorporating a hybrid (organic-inorganic) resin as a thermal barrier coating. One such resin system, meta-poly (carborane-siloxane-arylacetylene) (m-PCSAA), developed by the U.S. Naval Research Laboratory, shows potential for such application and is further investigated in this work. The resin has a low viscosity (0.1 Pa s) with large processing window (2.5 h) from 100°C to 230°C. These processing characteristics are advantageous for infusion processes or the inclusion of fillers for coating applications. Curing was accomplished in two stages, corresponding to two exothermic reactions. After the first curing stage, the resin exhibits elastomeric behavior, and after the second curing stage is rigid with a high glass transition temperature (∼330°C). The materials exhibited high char yields (89%) in air at 1000°C and may be useful in space or for attritable technology. No cracks were observed during long-term service at 288°C, but significant degradation and cracking were observed after aging at 316°C. The materials exhibited high coefficients of thermal expansion; 186.9 and 168.6 μm/(m∙°C) after first and second curing stage respectively. Similar to epoxies and polyimides, the resin acquired up to 3% moisture at 70°C and 85% relative humidity.
期刊介绍:
Health Services Management Research (HSMR) is an authoritative international peer-reviewed journal which publishes theoretically and empirically rigorous research on questions of enduring interest to health-care organizations and systems throughout the world. Examining the real issues confronting health services management, it provides an independent view and cutting edge evidence-based research to guide policy-making and management decision-making. HSMR aims to be a forum serving an international community of academics and researchers on the one hand and healthcare managers, executives, policymakers and clinicians and all health professionals on the other. HSMR wants to make a substantial contribution to both research and managerial practice, with particular emphasis placed on publishing studies which offer actionable findings and on promoting knowledge mobilisation toward theoretical advances. All papers are expected to be of interest and relevance to an international audience. HSMR aims at enhance communication between academics and practitioners concerned with developing, implementing, and analysing health management issues, reforms and innovations primarily in European health systems and in all countries with developed health systems. Papers can report research undertaken in a single country, but they need to locate and explain their findings in an international context, and in international literature.