A. Mayr, T. Wistuba, Jan Speller, F. Gudé, B. Hofner
{"title":"Linear or smooth? Enhanced model choice in boosting via deselection of base-learners","authors":"A. Mayr, T. Wistuba, Jan Speller, F. Gudé, B. Hofner","doi":"10.1177/1471082x231170045","DOIUrl":null,"url":null,"abstract":"The specification of a particular type of effect (e.g., linear or non-linear) of a covariate in a regression model can be either based on graphical assessment, subject matter knowledge or also on data-driven model choice procedures. For the latter variant, we present a boosting approach that is available for a huge number of different model classes. Boosting is an indirect regularization technique that leads to variable selection and can easily incorporate also non-linear or smooth effects. Furthermore, the algorithm can be adapted in a way to automatically select whether to model a continuous variable with a smooth or a linear effect. We enhance this model choice procedure by trying to compensate the inherent bias towards the more complex effect by incorporating a pragmatic and simple deselection technique that was originally implemented for enhanced variable selection. We illustrate our approach in the analysis of T3 thyroid hormone levels from a larger Galician cohort and investigate its performance in a simulation study.","PeriodicalId":49476,"journal":{"name":"Statistical Modelling","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082x231170045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
The specification of a particular type of effect (e.g., linear or non-linear) of a covariate in a regression model can be either based on graphical assessment, subject matter knowledge or also on data-driven model choice procedures. For the latter variant, we present a boosting approach that is available for a huge number of different model classes. Boosting is an indirect regularization technique that leads to variable selection and can easily incorporate also non-linear or smooth effects. Furthermore, the algorithm can be adapted in a way to automatically select whether to model a continuous variable with a smooth or a linear effect. We enhance this model choice procedure by trying to compensate the inherent bias towards the more complex effect by incorporating a pragmatic and simple deselection technique that was originally implemented for enhanced variable selection. We illustrate our approach in the analysis of T3 thyroid hormone levels from a larger Galician cohort and investigate its performance in a simulation study.
期刊介绍:
The primary aim of the journal is to publish original and high-quality articles that recognize statistical modelling as the general framework for the application of statistical ideas. Submissions must reflect important developments, extensions, and applications in statistical modelling. The journal also encourages submissions that describe scientifically interesting, complex or novel statistical modelling aspects from a wide diversity of disciplines, and submissions that embrace the diversity of applied statistical modelling.