Elucidating the Mechanism of Freeze-Thaw Driven Content Mixing between Protocells

IF 3.1 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemSystemsChem Pub Date : 2023-05-15 DOI:10.1002/syst.202300008
Benedikt Peter, Prof. Dr. Petra Schwille
{"title":"Elucidating the Mechanism of Freeze-Thaw Driven Content Mixing between Protocells","authors":"Benedikt Peter,&nbsp;Prof. Dr. Petra Schwille","doi":"10.1002/syst.202300008","DOIUrl":null,"url":null,"abstract":"<p>Modern cells rely on highly evolved protein networks to accomplish essential life functions, including the inheritance of information from parents to their offspring. In the absence of these sophisticated molecular machineries, alternatives were required for primitive protocells to proliferate and disseminate genetic material. Recurring environmental constraints on ancient earth, such as temperature cycles, are considered as prebiotically plausible driving forces capable of shuffling of protocellular contents, thereby boosting compositional complexity. Using confocal fluorescence microscopy, we show that temperature oscillations such as freezing-thawing (FT) cycles promote efficient content mixing between giant unilamellar vesicles (GUVs) as model protocells. We shed light on the underlying exchange mechanism and demonstrate that transient periods of destabilized membranes enable the diffusion of cargo molecules across vesicle membranes. Furthermore, we determine essential parameters, such as membrane composition, and quantify their impact on the lateral transfer efficiency. Our work outlines a simple scenario revolving around inter-protocellular communication environmentally driven by periodic freezing and melting of water.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":"5 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202300008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSystemsChem","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/syst.202300008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Modern cells rely on highly evolved protein networks to accomplish essential life functions, including the inheritance of information from parents to their offspring. In the absence of these sophisticated molecular machineries, alternatives were required for primitive protocells to proliferate and disseminate genetic material. Recurring environmental constraints on ancient earth, such as temperature cycles, are considered as prebiotically plausible driving forces capable of shuffling of protocellular contents, thereby boosting compositional complexity. Using confocal fluorescence microscopy, we show that temperature oscillations such as freezing-thawing (FT) cycles promote efficient content mixing between giant unilamellar vesicles (GUVs) as model protocells. We shed light on the underlying exchange mechanism and demonstrate that transient periods of destabilized membranes enable the diffusion of cargo molecules across vesicle membranes. Furthermore, we determine essential parameters, such as membrane composition, and quantify their impact on the lateral transfer efficiency. Our work outlines a simple scenario revolving around inter-protocellular communication environmentally driven by periodic freezing and melting of water.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冻融驱动原细胞间含量混合的机制研究
现代细胞依靠高度进化的蛋白质网络来完成基本的生命功能,包括从父母到后代的信息遗传。在缺乏这些复杂的分子机制的情况下,原始原始细胞增殖和传播遗传物质需要替代方法。古地球上反复出现的环境限制,如温度循环,被认为是益生元前可信的驱动力,能够重组原细胞内容物,从而提高成分的复杂性。利用共聚焦荧光显微镜,我们发现温度振荡(如冻融循环)促进了巨型单层囊泡(guv)之间的有效含量混合,作为模型原始细胞。我们阐明了潜在的交换机制,并证明了不稳定膜的短暂期使货物分子能够在囊泡膜上扩散。此外,我们确定了基本参数,如膜组成,并量化了它们对横向传递效率的影响。我们的工作概述了一个简单的场景,围绕着由水的周期性冻结和融化驱动的原细胞间通信环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
期刊最新文献
Front Cover: Photostimuli Reach a Selective Intermediate in a Microflow: One-Shot Transformation from a Supramolecular Co-Polymer to a Micro-Disk Structure (ChemSystemsChem 6/2024) Empowering Chemical AI Through Systems Chemistry Front Cover: Effect of Temperature on Calcium-Based Chemical Garden Growth (ChemSystemsChem 5/2024) Oscillations of the Local pH Reverses Silver Micromotors in H2O2 Transport-Limited Growth of Flow-Driven Rare-Earth Silicate Tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1