Jing Ye, Xiawei Dong, Hui Jiang, Yunzhu Chen, Chunhui Wu, Xuemei Wang
{"title":"Hybrid nanomaterials-based biomedical phototheranostic platforms","authors":"Jing Ye, Xiawei Dong, Hui Jiang, Yunzhu Chen, Chunhui Wu, Xuemei Wang","doi":"10.1088/2516-1091/abf821","DOIUrl":null,"url":null,"abstract":"The new hybrid nanomaterials have unique nanoparticle surface modification or core characteristics, with two or more chemical, physical, and optical properties. They have shown more personalized application prospects in disease management and treatment, and can significantly improve the diagnosis and treatment of various diseases. This article reviews the synthesis methods and structural characteristics of a series of new hybrid nanomaterials recently produced, including metallic oxide-containing hybrid nanomaterials, biopolymers-containing hybrid nanomaterials and in situ biosynthesis of hybrid nanomaterials. We focus on applying various types of hybrid nanomaterials in magnetic resonance imaging, photoacoustic, fluorescence imaging, and computed tomography imaging technology. At the same time, it summarizes the therapeutic effects of theranostics, cancer immunotherapy, photomedicine, and photothermal therapy under the guidance of imaging diagnosis. Finally, we briefly analyze the challenges in biomedical applications by hybrid materials as a nano-platform for imaging diagnosis and treatment and provides suggestions for future research in this field.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in biomedical engineering (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1091/abf821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The new hybrid nanomaterials have unique nanoparticle surface modification or core characteristics, with two or more chemical, physical, and optical properties. They have shown more personalized application prospects in disease management and treatment, and can significantly improve the diagnosis and treatment of various diseases. This article reviews the synthesis methods and structural characteristics of a series of new hybrid nanomaterials recently produced, including metallic oxide-containing hybrid nanomaterials, biopolymers-containing hybrid nanomaterials and in situ biosynthesis of hybrid nanomaterials. We focus on applying various types of hybrid nanomaterials in magnetic resonance imaging, photoacoustic, fluorescence imaging, and computed tomography imaging technology. At the same time, it summarizes the therapeutic effects of theranostics, cancer immunotherapy, photomedicine, and photothermal therapy under the guidance of imaging diagnosis. Finally, we briefly analyze the challenges in biomedical applications by hybrid materials as a nano-platform for imaging diagnosis and treatment and provides suggestions for future research in this field.