{"title":"Establishing a Relationship between Coal Quality and the Enrichment of Radionuclides in Coal Combustion Residues","authors":"U. A. Q. Ahmed, A. Joubert","doi":"10.4236/WJNST.2019.93008","DOIUrl":null,"url":null,"abstract":"Coal-fired power plants (CFPP) provide approximately 40% of the world’s energy demand. Naturally occurring radioactive materials (NORM) contained in coal become enriched in coal combustion residues as a result of the elimination of carbon during combustion. The fly ash and bottom ash produced from CFPP may be significant sources of exposure to naturally occurring radionuclides for the population near the combustion plant or ash dumps. Despite this fact, very few studies have actually addressed the relationship of the NORM enrichment factors and the quality of coal used. This paper aims to relate the quality of coal to the enrichment factors for the radionuclides of interest (K40, Ra226, Th232 and Po210) in coal combustion residues from three South African CFPP. The data from other CFPP was also taken into account to establish this correlation. The feedstock coal used in these CFPP is typically low quality, with ash content in the range of 25 - 45 wt%. The radionuclides investigated were determined by gamma spectrometry with the exception of Po210, which was determined by alpha spectrometry. The enrichment factors for the radionuclides of K40, Ra226, Th232 and Po210 in the fly ash and bottom ash (except Po210) was found to be directly proportional to the quality of coal. That is when the ash percentage increased (coal quality decreased) the enrichment factor decreased. The Po210 radionuclide in the bottom ash had an enrichment factor less than one. The relationship between coal quality and enrichment factors for the radionuclides of K40, Ra226, Th232 and Po210 in both the fly ash and bottom ash (except Po210 in the bottom ash) was demonstrated by the following mathematical equation: . This equation may be used as a good indication in obtaining an estimate in determining the enrichment of the mentioned radionuclides in coal combustion products such as fly ash and bottom ash.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"核科学与技术国际期刊(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/WJNST.2019.93008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Coal-fired power plants (CFPP) provide approximately 40% of the world’s energy demand. Naturally occurring radioactive materials (NORM) contained in coal become enriched in coal combustion residues as a result of the elimination of carbon during combustion. The fly ash and bottom ash produced from CFPP may be significant sources of exposure to naturally occurring radionuclides for the population near the combustion plant or ash dumps. Despite this fact, very few studies have actually addressed the relationship of the NORM enrichment factors and the quality of coal used. This paper aims to relate the quality of coal to the enrichment factors for the radionuclides of interest (K40, Ra226, Th232 and Po210) in coal combustion residues from three South African CFPP. The data from other CFPP was also taken into account to establish this correlation. The feedstock coal used in these CFPP is typically low quality, with ash content in the range of 25 - 45 wt%. The radionuclides investigated were determined by gamma spectrometry with the exception of Po210, which was determined by alpha spectrometry. The enrichment factors for the radionuclides of K40, Ra226, Th232 and Po210 in the fly ash and bottom ash (except Po210) was found to be directly proportional to the quality of coal. That is when the ash percentage increased (coal quality decreased) the enrichment factor decreased. The Po210 radionuclide in the bottom ash had an enrichment factor less than one. The relationship between coal quality and enrichment factors for the radionuclides of K40, Ra226, Th232 and Po210 in both the fly ash and bottom ash (except Po210 in the bottom ash) was demonstrated by the following mathematical equation: . This equation may be used as a good indication in obtaining an estimate in determining the enrichment of the mentioned radionuclides in coal combustion products such as fly ash and bottom ash.