Patch loading resistance of slender plate girders with multiple longitudinal stiffeners

IF 1.5 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Steel Construction-Design and Research Pub Date : 2023-02-01 DOI:10.1002/stco.202200047
B. Kövesdi, L. Dunai
{"title":"Patch loading resistance of slender plate girders with multiple longitudinal stiffeners","authors":"B. Kövesdi, L. Dunai","doi":"10.1002/stco.202200047","DOIUrl":null,"url":null,"abstract":"There is currently no reliable and simple design method available in international literature for the determination of the patch loading resistance of slender plate girders having multiple longitudinal stiffeners. The current research focuses on the patch loading resistance of girders having multiple longitudinal stiffeners. An advanced numerical model is developed and verified by own laboratory test results. A numerical parametric study is executed to investigate the load‐carrying capacity of girders having typical bridge geometries. Analysing the numerical simulation results, the structural behaviour obtained is classified based on the stiffener stiffness. Effect of the different geometrical parameters on the patch loading resistance is evaluated with special focus on the stiffener stiffness and distance between the longitudinal stiffeners. The failure modes depending on stiffener stiffness are investigated and the local buckling type failure is characterised by minimum stiffness. For this specific failure mode, an improved design method is developed, giving reliable resistance within the analysed parameter range. The presented resistance model is consistent with the design philosophy of EN 1993‐1‐5. The applicability of the improved design equation has been investigated for multiple stiffener places in unequal distances, which is the common case in praxis, and for bending and transverse force (M–F) interaction.","PeriodicalId":54183,"journal":{"name":"Steel Construction-Design and Research","volume":"16 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steel Construction-Design and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/stco.202200047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

There is currently no reliable and simple design method available in international literature for the determination of the patch loading resistance of slender plate girders having multiple longitudinal stiffeners. The current research focuses on the patch loading resistance of girders having multiple longitudinal stiffeners. An advanced numerical model is developed and verified by own laboratory test results. A numerical parametric study is executed to investigate the load‐carrying capacity of girders having typical bridge geometries. Analysing the numerical simulation results, the structural behaviour obtained is classified based on the stiffener stiffness. Effect of the different geometrical parameters on the patch loading resistance is evaluated with special focus on the stiffener stiffness and distance between the longitudinal stiffeners. The failure modes depending on stiffener stiffness are investigated and the local buckling type failure is characterised by minimum stiffness. For this specific failure mode, an improved design method is developed, giving reliable resistance within the analysed parameter range. The presented resistance model is consistent with the design philosophy of EN 1993‐1‐5. The applicability of the improved design equation has been investigated for multiple stiffener places in unequal distances, which is the common case in praxis, and for bending and transverse force (M–F) interaction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多纵加劲细长板梁的局部荷载抗力
目前国际文献中还没有可靠、简单的设计方法来确定多纵加劲细长板梁的局部荷载抗力。目前的研究主要集中在具有多个纵向加劲肋的梁的局部荷载抗力。建立了先进的数值模型,并通过自己的实验室试验结果进行了验证。对具有典型桥梁几何形状的梁的承载能力进行了数值参数研究。通过对数值模拟结果的分析,根据加劲刚度对结构性能进行了分类。研究了不同几何参数对补强刚度和纵向补强间距的影响。研究了随加劲肋刚度变化的局部屈曲型破坏模式,并以最小刚度为破坏特征。针对这种特殊的失效模式,提出了一种改进的设计方法,在分析的参数范围内给出了可靠的电阻。所提出的阻力模型符合en1993‐1‐5的设计理念。研究了改进设计方程对实际中常见的不等距离的多个加劲肋位置以及弯曲力和横向力相互作用的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Steel Construction-Design and Research
Steel Construction-Design and Research CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
3.00
自引率
6.20%
发文量
63
期刊介绍: Steel Construction publishes peerreviewed papers covering the entire field of steel construction research. In the interests of "construction without depletion", it skilfully combines steel with other forms of construction employing concrete, glass, cables and membranes to form integrated steelwork systems. Since 2010 Steel Construction is the official journal for ECCS- European Convention for Constructional Steelwork members. You will find more information about membership on the ECCS homepage. Topics include: -Design and construction of structures -Methods of analysis and calculation -Experimental and theoretical research projects and results -Composite construction -Steel buildings and bridges -Cable and membrane structures -Structural glazing -Masts and towers -Vessels, cranes and hydraulic engineering structures -Fire protection -Lightweight structures
期刊最新文献
Lateral torsional buckling of I‐section simply supported beams with stepped height Place and date – Event – Details Preview: Steel Construction 1/2024 News: Steel Construction 4/2023 Content: Steel Construction 4/2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1