Preparation of C-based Magnetic Materials from Fruit Peel and Hydrochar using Snake Fruit (Salacca zalacca) Peel as Adsorbents for the Removal of Malachite Green Dye
Mauizatul Hasanah, A. Wijaya, F. Arsyad, R. Mohadi, A. Lesbani
{"title":"Preparation of C-based Magnetic Materials from Fruit Peel and Hydrochar using Snake Fruit (Salacca zalacca) Peel as Adsorbents for the Removal of Malachite Green Dye","authors":"Mauizatul Hasanah, A. Wijaya, F. Arsyad, R. Mohadi, A. Lesbani","doi":"10.32526/ennrj/21/202200192","DOIUrl":null,"url":null,"abstract":"In this study, fruit peel-based magnetic (M-Sp) and hydrochar-based magnetic (M-HSp) materials were successfully synthesized by hydrothermal and magnetization treatments. Characterization using X-ray diffraction, Fourier-transform infrared spectroscopy, vibrating sample magnetometry, and scanning electron microscopy-energy dispersive spectroscopy confirmed their successful synthesis. The materials were applied as adsorbents for the removal of malachite green (MG) dye. Equilibrium adsorption occurred at 90 min according to the PSO kinetic model, and the adsorption followed the Langmuir isotherm. The adsorption capacity of the materials was improved by the hydrothermal and magnetic treatments compared to that of the untreated initial material. The adsorption capacities of M-Sp and M-HSp were 69.444 and 88.889 mg/g, respectively. The M-Sp and M-HSp adsorbents could be reused for up to four regeneration cycles compared to the three cycles for the initial material. The adsorption mechanism of MG dye by the M-Sp and M-HSp adsorbents was suggested to occur via hydrogen bond, electrostatic, π-π, and physical interactions. The magnetic materials prepared in this study had a high adsorption capacity and adsorbent reusability, rendering them promising for use in dye removal and to facilitate separation between adsorbents and adsorbates.","PeriodicalId":11784,"journal":{"name":"Environment and Natural Resources Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Natural Resources Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32526/ennrj/21/202200192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 2
Abstract
In this study, fruit peel-based magnetic (M-Sp) and hydrochar-based magnetic (M-HSp) materials were successfully synthesized by hydrothermal and magnetization treatments. Characterization using X-ray diffraction, Fourier-transform infrared spectroscopy, vibrating sample magnetometry, and scanning electron microscopy-energy dispersive spectroscopy confirmed their successful synthesis. The materials were applied as adsorbents for the removal of malachite green (MG) dye. Equilibrium adsorption occurred at 90 min according to the PSO kinetic model, and the adsorption followed the Langmuir isotherm. The adsorption capacity of the materials was improved by the hydrothermal and magnetic treatments compared to that of the untreated initial material. The adsorption capacities of M-Sp and M-HSp were 69.444 and 88.889 mg/g, respectively. The M-Sp and M-HSp adsorbents could be reused for up to four regeneration cycles compared to the three cycles for the initial material. The adsorption mechanism of MG dye by the M-Sp and M-HSp adsorbents was suggested to occur via hydrogen bond, electrostatic, π-π, and physical interactions. The magnetic materials prepared in this study had a high adsorption capacity and adsorbent reusability, rendering them promising for use in dye removal and to facilitate separation between adsorbents and adsorbates.
期刊介绍:
The Environment and Natural Resources Journal is a peer-reviewed journal, which provides insight scientific knowledge into the diverse dimensions of integrated environmental and natural resource management. The journal aims to provide a platform for exchange and distribution of the knowledge and cutting-edge research in the fields of environmental science and natural resource management to academicians, scientists and researchers. The journal accepts a varied array of manuscripts on all aspects of environmental science and natural resource management. The journal scope covers the integration of multidisciplinary sciences for prevention, control, treatment, environmental clean-up and restoration. The study of the existing or emerging problems of environment and natural resources in the region of Southeast Asia and the creation of novel knowledge and/or recommendations of mitigation measures for sustainable development policies are emphasized. The subject areas are diverse, but specific topics of interest include: -Biodiversity -Climate change -Detection and monitoring of polluted sources e.g., industry, mining -Disaster e.g., forest fire, flooding, earthquake, tsunami, or tidal wave -Ecological/Environmental modelling -Emerging contaminants/hazardous wastes investigation and remediation -Environmental dynamics e.g., coastal erosion, sea level rise -Environmental assessment tools, policy and management e.g., GIS, remote sensing, Environmental -Management System (EMS) -Environmental pollution and other novel solutions to pollution -Remediation technology of contaminated environments -Transboundary pollution -Waste and wastewater treatments and disposal technology