{"title":"LCOS Spatial Light Modulator for Digital Holography","authors":"Weijie Wu, M. Pivnenko, D. Chu","doi":"10.4302/plp.v13i4.1123","DOIUrl":null,"url":null,"abstract":"Liquid crystal on silicon (LCOS) spatial light modulator (SLM) is the most widely used optical engine for digital holography. This paper aims to provide an overview of the applications of phase-only LCOS in two-dimensional (2D) holography. It begins with a brief introduction to the holography theory along with its development trajectory, followed by the fundamental operating principle of phase-only LCOS SLMs. Hardware performance of LCOS SLMs (in terms of frame rate, phase linearity and flicker) and related experimental results are presented. Finally, potential improvements and applications are discussed for futuristic holographic displays. Full Text: PDF ReferencesM. Wolfke, Physikalische Zeitschrift 21, 495 (1920). DirectLink D. Gabor, \"A New Microscopic Principle\", Nature 161, 777 (1948). CrossRef H. Haken, \"Laser Theory\", Light and Matter 5, 14 (1970). CrossRef S. Benton, \"Selected Papers on Three-dimensional displays\", SPIE Press (2001). DirectLink X. Liang et al, \"3D holographic display with optically addressed spatial light modulator\", 3DTV-CON 2009 - 3rd 3DTV-Conference (2009). CrossRef J. Chen, W. Cranton, M. Fihn, \"Handbook of Visual Display Technology\", Springer (2012). CrossRef D. Rogers, \"The chemistry of photography: From classical to digital technologies\", Royal Society of Chemistry (2007). CrossRef S. Reichelt et al, \"Depth cues in human visual perception and their realization in 3D displays\", Proc. SPIE 7690, 76900B (2010). CrossRef A.W. Lohmann, D. Paris, \"Binary Fraunhofer Holograms, Generated by Computer\", Appl. Opt. 6, 1739 (1967). CrossRef J.W. Goodman, R.W. Lawrence, \"Digital Image Formation from Electronically Detected Hologtrams\", Appl. Phys. Lett 17, 77 (1967). CrossRef D.C. O'Brien, R.J. Mears, and W.A. Crossland, \"Dynamic holographic interconnects that use ferroelectric liquid-crystal spatial light modulators\", Appl. Opt. 33, 2795, (1994). CrossRef R.W. Gerchberg, and W.O. Saxton, \"A practical algorithm for the determination of phase from image and diffraction plane pictures\", Optik 35, 237 (1972). DirectLink M. Ernstoff, A. Leupp, M. Little, and H. Peterson, \"Liquid crystal pictorial display\", Proceedings of the 1973 International Electron Devices Meeting, IEEE, 548 (1973). CrossRef W.A. Crossland, P.J. Ayliffe, and P.W. Ross, \"A dyed-phase-change liquid crystal display over a MOSFET switching array\", Proc SID 23, 15 (1982). DirectLink M. Tang, and J. Wu, \"Optical Correlation recoginition based on LCOS\", Internation Symposium on Photoelectronic Detection and Imaging 2013, Optical Storage and Display Tech., 8913 (2013). CrossRef A. Hermerschmidt, et al. Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm, Complex Light and Optical Forces II, International Society for Optics and Photonics, 30282 (2008). CrossRef M. Wang, et al. \"LCoS SLM Study and Its Application in Wavelength Selective Switch\", Photonics 4, 22 (2017). CrossRef Z. Zhang, Z. You, and D. Chu, \"Fundamentals of phase-only liquid crystal on silicon (LCOS) devices\", Light Sci. & Appls. 3, e213 (2014). CrossRef D. Yang, and S. Wu, Fundamentals of liquid crystal devices, 2nd edition (Wiley 2015). CrossRef B. Prince, Semiconductor memories: A handbook of design, manufacture, and application, 2nd ed. (John Wiley & Sons 1996). DirectLink J.C. Jones, Liquid crystal displays, Handbook of optoelectronics: Enabling Technologies, 2nd ed. (CRC Press 2018). DirectLink A. Ayriyan, et al. \"Simulation of the Static Electric Field Effect on the Director Orientation of Nematic Liquid Crystal in the Transition State\", Phys. Wave Phenom. 27, 67 (2019). CrossRef S.M. Kelly, and M. O'Neil, Liquid crystal for electro-optic applications, Handbook of advanced electronics and photonic materials and devices 7, 15 (2000). DirectLink Y. Ji, et al., \"Suspected Intraoperative Anaphylaxis to Gelatin Absorbable Hemostatic Sponge\", J. SID 22, 4652 (2015). CrossRef X. Chang, Solution-processed ZnO nanoparticles for optically addressed spatial light modulator and other applications, Ph.D. thesis, (University of Cambridge, Cambridge 2019) CrossRef E. Moon, et al. \"Holographic head-mounted display with RGB light emitting diode light source\", Opt. Express 22, 6526 (2014). CrossRef G. Aad, et al. \"Study of jet shapes in inclusive jet production in pp collisions at √s=7 TeV using the ATLAS detector\", Phys Rev. D 83, 052003 (2011). CrossRef M. Pivnenko, K. Li, and D. Chu, \"Sub-millisecond switching of multi-level liquid crystal on silicon spatial light modulators for increased information bandwidth\", Opt. Express 29, 24614 (2021). CrossRef H. Yang, and D.P. Chu, \"Phase flicker optimisation in digital liquid crystal on silicon devices\", Opt. Express 27, 24556 (2019). CrossRef P. Bach-Y-Rita, et al. \"Seeing with the Brain\", Int. J. Hum. -Comput. Interact 15, 285 (2003). CrossRef Y. Tong, M. Pivnenko, and D. Chu, \"Improvements of phase linearity and phase flicker of phase-only LCoS devices for holographic applications\", Appl. Opt. 58, G248 (2019). CrossRef Y. Tong, M. Pivnenko, and D. Chu, \"Implementation of 10-Bit Phase Modulation for Phase-Only LCOS Devices Using Deep Learning\", Adv. Dev. & Instr. 1, 10 (2020). CrossRef H. Yang, and D. Chu, \"Phase flicker optimisation in digital liquid crystal on silicon devices\", Opt. Express 27, 24556 (2019). CrossRef J. García-Márquez, et al. \"Mueller-Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization\", Opt.Express 16, 8431 (2008). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/plp.v13i4.1123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1
Abstract
Liquid crystal on silicon (LCOS) spatial light modulator (SLM) is the most widely used optical engine for digital holography. This paper aims to provide an overview of the applications of phase-only LCOS in two-dimensional (2D) holography. It begins with a brief introduction to the holography theory along with its development trajectory, followed by the fundamental operating principle of phase-only LCOS SLMs. Hardware performance of LCOS SLMs (in terms of frame rate, phase linearity and flicker) and related experimental results are presented. Finally, potential improvements and applications are discussed for futuristic holographic displays. Full Text: PDF ReferencesM. Wolfke, Physikalische Zeitschrift 21, 495 (1920). DirectLink D. Gabor, "A New Microscopic Principle", Nature 161, 777 (1948). CrossRef H. Haken, "Laser Theory", Light and Matter 5, 14 (1970). CrossRef S. Benton, "Selected Papers on Three-dimensional displays", SPIE Press (2001). DirectLink X. Liang et al, "3D holographic display with optically addressed spatial light modulator", 3DTV-CON 2009 - 3rd 3DTV-Conference (2009). CrossRef J. Chen, W. Cranton, M. Fihn, "Handbook of Visual Display Technology", Springer (2012). CrossRef D. Rogers, "The chemistry of photography: From classical to digital technologies", Royal Society of Chemistry (2007). CrossRef S. Reichelt et al, "Depth cues in human visual perception and their realization in 3D displays", Proc. SPIE 7690, 76900B (2010). CrossRef A.W. Lohmann, D. Paris, "Binary Fraunhofer Holograms, Generated by Computer", Appl. Opt. 6, 1739 (1967). CrossRef J.W. Goodman, R.W. Lawrence, "Digital Image Formation from Electronically Detected Hologtrams", Appl. Phys. Lett 17, 77 (1967). CrossRef D.C. O'Brien, R.J. Mears, and W.A. Crossland, "Dynamic holographic interconnects that use ferroelectric liquid-crystal spatial light modulators", Appl. Opt. 33, 2795, (1994). CrossRef R.W. Gerchberg, and W.O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures", Optik 35, 237 (1972). DirectLink M. Ernstoff, A. Leupp, M. Little, and H. Peterson, "Liquid crystal pictorial display", Proceedings of the 1973 International Electron Devices Meeting, IEEE, 548 (1973). CrossRef W.A. Crossland, P.J. Ayliffe, and P.W. Ross, "A dyed-phase-change liquid crystal display over a MOSFET switching array", Proc SID 23, 15 (1982). DirectLink M. Tang, and J. Wu, "Optical Correlation recoginition based on LCOS", Internation Symposium on Photoelectronic Detection and Imaging 2013, Optical Storage and Display Tech., 8913 (2013). CrossRef A. Hermerschmidt, et al. Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm, Complex Light and Optical Forces II, International Society for Optics and Photonics, 30282 (2008). CrossRef M. Wang, et al. "LCoS SLM Study and Its Application in Wavelength Selective Switch", Photonics 4, 22 (2017). CrossRef Z. Zhang, Z. You, and D. Chu, "Fundamentals of phase-only liquid crystal on silicon (LCOS) devices", Light Sci. & Appls. 3, e213 (2014). CrossRef D. Yang, and S. Wu, Fundamentals of liquid crystal devices, 2nd edition (Wiley 2015). CrossRef B. Prince, Semiconductor memories: A handbook of design, manufacture, and application, 2nd ed. (John Wiley & Sons 1996). DirectLink J.C. Jones, Liquid crystal displays, Handbook of optoelectronics: Enabling Technologies, 2nd ed. (CRC Press 2018). DirectLink A. Ayriyan, et al. "Simulation of the Static Electric Field Effect on the Director Orientation of Nematic Liquid Crystal in the Transition State", Phys. Wave Phenom. 27, 67 (2019). CrossRef S.M. Kelly, and M. O'Neil, Liquid crystal for electro-optic applications, Handbook of advanced electronics and photonic materials and devices 7, 15 (2000). DirectLink Y. Ji, et al., "Suspected Intraoperative Anaphylaxis to Gelatin Absorbable Hemostatic Sponge", J. SID 22, 4652 (2015). CrossRef X. Chang, Solution-processed ZnO nanoparticles for optically addressed spatial light modulator and other applications, Ph.D. thesis, (University of Cambridge, Cambridge 2019) CrossRef E. Moon, et al. "Holographic head-mounted display with RGB light emitting diode light source", Opt. Express 22, 6526 (2014). CrossRef G. Aad, et al. "Study of jet shapes in inclusive jet production in pp collisions at √s=7 TeV using the ATLAS detector", Phys Rev. D 83, 052003 (2011). CrossRef M. Pivnenko, K. Li, and D. Chu, "Sub-millisecond switching of multi-level liquid crystal on silicon spatial light modulators for increased information bandwidth", Opt. Express 29, 24614 (2021). CrossRef H. Yang, and D.P. Chu, "Phase flicker optimisation in digital liquid crystal on silicon devices", Opt. Express 27, 24556 (2019). CrossRef P. Bach-Y-Rita, et al. "Seeing with the Brain", Int. J. Hum. -Comput. Interact 15, 285 (2003). CrossRef Y. Tong, M. Pivnenko, and D. Chu, "Improvements of phase linearity and phase flicker of phase-only LCoS devices for holographic applications", Appl. Opt. 58, G248 (2019). CrossRef Y. Tong, M. Pivnenko, and D. Chu, "Implementation of 10-Bit Phase Modulation for Phase-Only LCOS Devices Using Deep Learning", Adv. Dev. & Instr. 1, 10 (2020). CrossRef H. Yang, and D. Chu, "Phase flicker optimisation in digital liquid crystal on silicon devices", Opt. Express 27, 24556 (2019). CrossRef J. García-Márquez, et al. "Mueller-Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization", Opt.Express 16, 8431 (2008). CrossRef
硅基液晶(LCOS)空间光调制器(SLM)是应用最广泛的数字全息光引擎。本文综述了纯相位LCOS在二维全息中的应用。首先简要介绍了全息理论及其发展轨迹,然后介绍了纯相位LCOS slm的基本工作原理。介绍了LCOS slm的硬件性能(帧率、相位线性度和闪烁)和相关实验结果。最后,讨论了未来全息显示的潜在改进和应用。全文:PDF参考文献沃尔夫克,《物理学报》21,495(1920)。D. Gabor,《一种新的微观原理》,《自然》161,777(1948)。CrossRef H. Haken,“激光理论”,光与物质5,14(1970)。CrossRef S. Benton,“三维显示论文选集”,SPIE出版社(2001)。DirectLink X. Liang等,“基于光学寻址空间光调制器的3D全息显示”,第三届3DTV-CON(2009)。CrossRef J. Chen, W. Cranton, M. Fihn,“视觉显示技术手册”,vol . 10(2012)。CrossRef D. Rogers,“摄影的化学:从古典到数字技术”,英国皇家化学学会(2007)。CrossRef S. Reichelt等,“深度线索在人类视觉感知中的应用及其在3D显示中的实现”,中国机械工程学报(自然科学版),7690,76900b(2010)。A.W. Lohmann, D. Paris,“计算机生成的二进制弗劳恩霍夫全息图”,applied。选择6,1739(1967)。J.W. Goodman, R.W. Lawrence,“从电子检测全息图中生成数字图像”,苹果。理论物理。左17,77(1967)。R.J. Mears和W.A. Crossland,“使用铁电液晶空间光调制器的动态全息互连”,applied。选择33,2795,(1994)。CrossRef R.W. Gerchberg和W.O. Saxton,“从图像和衍射平面图像中确定相位的实用算法”,Optik 35, 237(1972)。M. Ernstoff, A. Leupp, M. Little和H. Peterson,“液晶图像显示”,1973年国际电子器件会议论文集,IEEE, 548(1973)。王晓明,王晓明,“一种基于MOSFET开关阵列的染料相变液晶显示技术”,电子工程学报,2003,15(1982)。唐明,吴军,“基于LCOS的光学相关识别”,2013年国际光电检测与成像学术研讨会,光学存储与显示技术,8913(2013)。CrossRef A. Hermerschmidt,等。全息光镊在1064nm的实时全息图计算中的应用,复杂光与光学力II,国际光学与光子学会,30282(2008)。CrossRef . Wang M.等。“LCoS SLM研究及其在波长选择开关中的应用”,光子学4,22(2017)。张志强,尤志强,朱德德,“LCOS器件上纯相位液晶的基本原理”,光学科学。[j] .科学与应用,2014(1)。CrossRef D. Yang和S. Wu,液晶器件基础,第2版(Wiley 2015)。CrossRef B. Prince,半导体存储器:设计,制造和应用手册,第2版(John Wiley & Sons 1996)。DirectLink J.C. Jones,液晶显示器,光电子手册:使能技术,第2版(CRC出版社2018)。A. Ayriyan等。“静电场对向列液晶过渡态指向取向影响的模拟”,物理学报(自然科学版)。波浪现象。27,67(2019)。[CrossRef]陈晓明,王晓明,液晶在光电领域的应用,光子材料与器件学报,7,15(2000)。季艳,等,“术中对明胶可吸收止血海绵的过敏反应”,中华临床医学杂志,22,46(2015)。CrossRef . Chang,溶液处理ZnO纳米粒子用于光学寻址空间光调制器及其他应用,博士论文,(University of Cambridge, 2019)“基于RGB发光二极管光源的全息头戴式显示器”,光电学报22,6526(2014)。CrossRef G. Aad,等。“利用ATLAS探测器研究√s=7 TeV的pp碰撞中包含射流产生的射流形状”,物理学报,83,05 - 2003(2011)。李建军,李建军,朱建军,“基于多尺度液晶的空间光调制器”,光学学报,29(4),2014。CrossRef杨辉,朱德平,“基于硅器件的数字液晶相位闪烁优化”,光学学报,27,24556(2019)。CrossRef P. Bach-Y-Rita,等。“用大脑看”,Int。j .的嗡嗡声。第一版。扶轮社15,285(2003)。CrossRef . Tong, M. Pivnenko, D。 Chu,“全息应用中纯相位LCoS器件的相位线性和相位闪烁的改进”,applied。光电58,G248(2019)。CrossRef . Tong, M. Pivnenko, D. Chu,“基于深度学习的纯相位LCOS器件的10位相位调制实现”,软件开发与应用,1(2020)。杨辉,朱德华,“基于硅器件的数字液晶的相位闪烁优化”,光学学报,27,24(2019)。CrossRef J. García-Márquez,等。“去极化液晶的Mueller-Stokes表征与优化”,光学快报16,8431(2008)。CrossRef