Kuanxin Hou, H. Xiang, Jie Gao, Binbin Lin, Qiulin Dai, Yao Fu, Yong Yang, Lei Huang
{"title":"Effect of the distribution of the upstream probe support on performance of compressor cascade","authors":"Kuanxin Hou, H. Xiang, Jie Gao, Binbin Lin, Qiulin Dai, Yao Fu, Yong Yang, Lei Huang","doi":"10.1515/tjeng-2022-0027","DOIUrl":null,"url":null,"abstract":"Abstract Aiming at the problem of aerodynamic coupling interference between disturbance of the built-in measurement probe and internal flow of high load compressor, the experiment of axial position and structure dimension of cylindrical probe support effect on the performance of the compressor cascade was carried out on the transonic plane cascade test facility. The effect characteristics of the distribution of probe support on aerodynamic performance of downstream cascade under different inlet Mach numbers were analyzed through the experimental data. The experimental results show that the axial position of probe support has little impact on the total pressure loss coefficient of cascade under the low-speed inlet flow condition. However, the variety of the axial position of probe support has a great impact on the total pressure loss coefficient of cascade under the high-speed inlet flow condition. With the decrease of the axial distance between probe support and cascade, the total pressure loss coefficient of cascade increases. Under different inlet flow conditions, the variety of the structure dimension of probe support has a significant impact on the total pressure loss coefficient of cascade. With the increase of the structure dimension of probe support, the total pressure loss coefficient of cascade increases.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjeng-2022-0027","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Aiming at the problem of aerodynamic coupling interference between disturbance of the built-in measurement probe and internal flow of high load compressor, the experiment of axial position and structure dimension of cylindrical probe support effect on the performance of the compressor cascade was carried out on the transonic plane cascade test facility. The effect characteristics of the distribution of probe support on aerodynamic performance of downstream cascade under different inlet Mach numbers were analyzed through the experimental data. The experimental results show that the axial position of probe support has little impact on the total pressure loss coefficient of cascade under the low-speed inlet flow condition. However, the variety of the axial position of probe support has a great impact on the total pressure loss coefficient of cascade under the high-speed inlet flow condition. With the decrease of the axial distance between probe support and cascade, the total pressure loss coefficient of cascade increases. Under different inlet flow conditions, the variety of the structure dimension of probe support has a significant impact on the total pressure loss coefficient of cascade. With the increase of the structure dimension of probe support, the total pressure loss coefficient of cascade increases.
期刊介绍:
The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines.
The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.