{"title":"Elliptic Theory for Sets with Higher Co-dimensional Boundaries","authors":"G. David, J. Feneuil, S. Mayboroda","doi":"10.1090/memo/1346","DOIUrl":null,"url":null,"abstract":"<p>Many geometric and analytic properties of sets hinge on the properties of elliptic measure, notoriously missing for sets of higher co-dimension. The aim of this manuscript is to develop a version of elliptic theory, associated to a linear PDE, which ultimately yields a notion analogous to that of the harmonic measure, for sets of codimension higher than 1.</p>\n\n<p>To this end, we turn to degenerate elliptic equations. Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma subset-of double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma \\subset \\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be an Ahlfors regular set of dimension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d greater-than n minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">d>n-1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (not necessarily integer) and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega equals double-struck upper R Superscript n Baseline minus normal upper Gamma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo>=</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:mo class=\"MJX-variant\">∖<!-- ∖ --></mml:mo>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Omega = \\mathbb {R}^n \\setminus \\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L equals minus d i v upper A nabla\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>L</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>div</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mi>A</mml:mi>\n <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">L = - \\operatorname {div} A\\nabla</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a degenerate elliptic operator with measurable coefficients such that the ellipticity constants of the matrix <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are bounded from above and below by a multiple of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d i s t left-parenthesis dot comma normal upper Gamma right-parenthesis Superscript d plus 1 minus n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>dist</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo>⋅<!-- ⋅ --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>d</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\operatorname {dist}(\\cdot , \\Gamma )^{d+1-n}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We define weak solutions; prove trace and extension theorems in suitable weighted Sobolev spaces; establish the maximum principle, De Giorgi-Nash-Moser estimates, the Harnack inequality, the Hölder continuity of solutions (inside and at the boundary). We define the Green function and provide the basic set of pointwise and/or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript p\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">L^p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> estimates for the Green function and for its gradient. With this at hand, we define harmonic measure associated to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, establish its doubling property, non-degeneracy, change-of-the-pole formulas, and, finally, the comparison principle for local solutions.</p>\n\n<p>In another article to appear, we will prove that when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the graph of a Lipschitz function with small Lipschitz constant, we can find an elliptic operator <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for which the harmonic measure given here is absolutely continuous with respect to the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-Hausdorff measure on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and vice versa. It thus extends Dahlberg’s theorem to some sets of codimension higher than 1.</p>","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1346","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Many geometric and analytic properties of sets hinge on the properties of elliptic measure, notoriously missing for sets of higher co-dimension. The aim of this manuscript is to develop a version of elliptic theory, associated to a linear PDE, which ultimately yields a notion analogous to that of the harmonic measure, for sets of codimension higher than 1.
To this end, we turn to degenerate elliptic equations. Let Γ⊂Rn\Gamma \subset \mathbb {R}^n be an Ahlfors regular set of dimension d>n−1d>n-1 (not necessarily integer) and Ω=Rn∖Γ\Omega = \mathbb {R}^n \setminus \Gamma. Let L=−divA∇L = - \operatorname {div} A\nabla be a degenerate elliptic operator with measurable coefficients such that the ellipticity constants of the matrix AA are bounded from above and below by a multiple of dist(⋅,Γ)d+1−n\operatorname {dist}(\cdot , \Gamma )^{d+1-n}. We define weak solutions; prove trace and extension theorems in suitable weighted Sobolev spaces; establish the maximum principle, De Giorgi-Nash-Moser estimates, the Harnack inequality, the Hölder continuity of solutions (inside and at the boundary). We define the Green function and provide the basic set of pointwise and/or LpL^p estimates for the Green function and for its gradient. With this at hand, we define harmonic measure associated to LL, establish its doubling property, non-degeneracy, change-of-the-pole formulas, and, finally, the comparison principle for local solutions.
In another article to appear, we will prove that when Γ\Gamma is the graph of a Lipschitz function with small Lipschitz constant, we can find an elliptic operator LL for which the harmonic measure given here is absolutely continuous with respect to the dd-Hausdorff measure on Γ\Gamma and vice versa. It thus extends Dahlberg’s theorem to some sets of codimension higher than 1.
期刊介绍:
Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.