DFT study of the adsorption of simple organic sulfur gases on g-C3N4; periodic and non-periodic approaches

IF 2.1 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Sulfur Chemistry Pub Date : 2023-05-20 DOI:10.1080/17415993.2023.2209687
E. Vessally, Mehdi Hosseinali, M. R. Poor Heravi, B. Mohammadi
{"title":"DFT study of the adsorption of simple organic sulfur gases on g-C3N4; periodic and non-periodic approaches","authors":"E. Vessally, Mehdi Hosseinali, M. R. Poor Heravi, B. Mohammadi","doi":"10.1080/17415993.2023.2209687","DOIUrl":null,"url":null,"abstract":"In the present work, the adsorption of some simple organic sulfur gases (CS2, OCS, and CH3SH) on the g-C3N4 was studied using periodic and non-periodic density functional theory (DFT). PBE-D3/DNP and B3LYP-D3/6-31G(d) levels of theory were employed for periodic and non-periodic calculations, respectively. The calculated CS2, OCS, and CH3SH adsorption energies were obtained to be −4.35, −5.82, and −8.58 Kcal/mol. The interactions of simple organic sulfur gases with g-C3N4 were characterized by NBO second-order perturbation theory and quantum theory of atom in molecule (QTAIM). The bandgap energies and work function of g-C3N4 and its complexes with simple organic sulfur gases were extracted from their band structures. The CS2 and OCS adsorptions didn’t significantly alter the bandgap and work function of g-C3N4. Therefore, g-C3N4 is not a proper sensor for detecting CS2 and OCS. The bandgap and work function of g-C3N4 were averagely changed by 18% and 2.7%, respectively, after CH3SH adsorption. Accordingly, g-C3N4 may use as a suitable sensor for detecting CH3SH based on electronic conductivity and work function. GRAPHICAL ABSTRACT","PeriodicalId":17081,"journal":{"name":"Journal of Sulfur Chemistry","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sulfur Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/17415993.2023.2209687","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the present work, the adsorption of some simple organic sulfur gases (CS2, OCS, and CH3SH) on the g-C3N4 was studied using periodic and non-periodic density functional theory (DFT). PBE-D3/DNP and B3LYP-D3/6-31G(d) levels of theory were employed for periodic and non-periodic calculations, respectively. The calculated CS2, OCS, and CH3SH adsorption energies were obtained to be −4.35, −5.82, and −8.58 Kcal/mol. The interactions of simple organic sulfur gases with g-C3N4 were characterized by NBO second-order perturbation theory and quantum theory of atom in molecule (QTAIM). The bandgap energies and work function of g-C3N4 and its complexes with simple organic sulfur gases were extracted from their band structures. The CS2 and OCS adsorptions didn’t significantly alter the bandgap and work function of g-C3N4. Therefore, g-C3N4 is not a proper sensor for detecting CS2 and OCS. The bandgap and work function of g-C3N4 were averagely changed by 18% and 2.7%, respectively, after CH3SH adsorption. Accordingly, g-C3N4 may use as a suitable sensor for detecting CH3SH based on electronic conductivity and work function. GRAPHICAL ABSTRACT
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
g-C3N4吸附简单有机硫气体的DFT研究周期和非周期方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sulfur Chemistry
Journal of Sulfur Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
4.10
自引率
9.10%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Journal of Sulfur Chemistry is an international journal for the dissemination of scientific results in the rapidly expanding realm of sulfur chemistry. The journal publishes high quality reviews, full papers and communications in the following areas: organic and inorganic chemistry, industrial chemistry, materials and polymer chemistry, biological chemistry and interdisciplinary studies directly related to sulfur science. Papers outlining theoretical, physical, mechanistic or synthetic studies pertaining to sulfur chemistry are welcome. Hence the target audience is made up of academic and industrial chemists with peripheral or focused interests in sulfur chemistry. Manuscripts that truly define the aims of the journal include, but are not limited to, those that offer: a) innovative use of sulfur reagents; b) new synthetic approaches to sulfur-containing biomolecules, materials or organic and organometallic compounds; c) theoretical and physical studies that facilitate the understanding of sulfur structure, bonding or reactivity; d) catalytic, selective, synthetically useful or noteworthy transformations of sulfur containing molecules; e) industrial applications of sulfur chemistry; f) unique sulfur atom or molecule involvement in interfacial phenomena; g) descriptions of solid phase or combinatorial methods involving sulfur containing substrates. Submissions pertaining to related atoms such as selenium and tellurium are also welcome. Articles offering routine heterocycle formation through established reactions of sulfur containing substrates are outside the scope of the journal.
期刊最新文献
A green and efficient synthesis of alkyl 2-((5-hydroxy-1H-pyrazole-4-carbonothioyl)thio)acetates via a one-pot, solvent-free reaction Synthesis of novel isoxazole/dihydroisoxazole tethered β-lactam hybrids via regiospecific 1,3-dipolar cycloaddition methodology on 3-phenylthio-β-lactams Thiazole derivatives: prospectives and biological applications Synthesis of benzothioamide derivatives from benzonitriles and H2S-based salts in supercritical CO2 Synthesis and biological evaluation of 2-(2-hydrazinyl) thiazole derivatives with potential antibacterial and antioxidant activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1