Myo Jung Kwak , Joon Young Yoon , Sayyoon Park , Seungmin Kwon , Yun-Ho Shin , Yoojeong Noh
{"title":"Extent of damage analysis of naval ships subject to internal explosions","authors":"Myo Jung Kwak , Joon Young Yoon , Sayyoon Park , Seungmin Kwon , Yun-Ho Shin , Yoojeong Noh","doi":"10.1016/j.ijnaoe.2023.100514","DOIUrl":null,"url":null,"abstract":"<div><p>A well-balanced naval ship design to enhance the survivability from the initial design stage in parallel with other designs focusing on the major function and its inherent mission is considered as a desirable design trend in ROK navy since Cheonan sinking accident. Because it is difficult to estimate a hit location of a given threat for survivability evaluation, a statistical approach based on multiple-hit scenarios is frequently addressed, and it is necessary to accomplish rapid analyzes considering the tight design schedule. In addition, accurately estimating the extent of damage caused by the given threat is also an important matter to secure the reliability of evaluation. In particular, the empirical formula-based damage extent estimation method, which is frequently used for initial rapid vulnerability analysis, has limitations in not faithfully reflecting the latest technology advances such as hull design changes and diversification of threats, so researches on this have been continuously accomplished. In this study, a method for analyzing the extent of damage was developed considering the structural response of a ship to damage under a blast load. The proposed method quickly and easily calculates the extent of damage using physical design parameters together with the accurate analysis results and is also very effective at the initial design stage of the naval ship (e.g., in evaluating various design candidates for structural configurations). To show the effectiveness of suggested method, FLACS, a well-known commercial program for explosion analysis, is used for the analysis of nine representative scenarios together with the stepwise validations of the suggested procedure; the analysis results are observed the same in most cases with the developed program based on the proposed procedure, with a difference of approximately 15% for one scenario.</p></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"15 ","pages":"Article 100514"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678223000031","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
A well-balanced naval ship design to enhance the survivability from the initial design stage in parallel with other designs focusing on the major function and its inherent mission is considered as a desirable design trend in ROK navy since Cheonan sinking accident. Because it is difficult to estimate a hit location of a given threat for survivability evaluation, a statistical approach based on multiple-hit scenarios is frequently addressed, and it is necessary to accomplish rapid analyzes considering the tight design schedule. In addition, accurately estimating the extent of damage caused by the given threat is also an important matter to secure the reliability of evaluation. In particular, the empirical formula-based damage extent estimation method, which is frequently used for initial rapid vulnerability analysis, has limitations in not faithfully reflecting the latest technology advances such as hull design changes and diversification of threats, so researches on this have been continuously accomplished. In this study, a method for analyzing the extent of damage was developed considering the structural response of a ship to damage under a blast load. The proposed method quickly and easily calculates the extent of damage using physical design parameters together with the accurate analysis results and is also very effective at the initial design stage of the naval ship (e.g., in evaluating various design candidates for structural configurations). To show the effectiveness of suggested method, FLACS, a well-known commercial program for explosion analysis, is used for the analysis of nine representative scenarios together with the stepwise validations of the suggested procedure; the analysis results are observed the same in most cases with the developed program based on the proposed procedure, with a difference of approximately 15% for one scenario.
期刊介绍:
International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.