Design and Achievement of Superfilling Electroless Silver Deposition for Micrometer Trenches

Xu Wang, Weiwu Ma, Carlos Fernandez
{"title":"Design and Achievement of Superfilling Electroless Silver Deposition for Micrometer Trenches","authors":"Xu Wang,&nbsp;Weiwu Ma,&nbsp;Carlos Fernandez","doi":"10.3103/S1068375523010143","DOIUrl":null,"url":null,"abstract":"<p>Electroless silver bottom-up filling has been designed and investigated by linear sweep voltammetry. It was found that the addition of polyethylene glycol 4000 (PEG 4000) had a good inhibitory effect on the electrode reaction. Experiments showed that PEG 4000 had a strong depressing action in electroless silver deposition. Specifically, when the PEG 4000 concentration was 1.0 mg/L, the plating rate of electroless silver decreased from 5.7 to 2.3 μm/h. The bottom-up silver fillings for different-sized trenches were achieved in an electroless plating bath with the addition of PEG 4000. The trenches analysis showed that all microtrenches with different widths were completely filled by electroless silver plating.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"59 1","pages":"15 - 19"},"PeriodicalIF":0.9000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375523010143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Electroless silver bottom-up filling has been designed and investigated by linear sweep voltammetry. It was found that the addition of polyethylene glycol 4000 (PEG 4000) had a good inhibitory effect on the electrode reaction. Experiments showed that PEG 4000 had a strong depressing action in electroless silver deposition. Specifically, when the PEG 4000 concentration was 1.0 mg/L, the plating rate of electroless silver decreased from 5.7 to 2.3 μm/h. The bottom-up silver fillings for different-sized trenches were achieved in an electroless plating bath with the addition of PEG 4000. The trenches analysis showed that all microtrenches with different widths were completely filled by electroless silver plating.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微米沟槽超填充化学镀银的设计与实现
采用线性扫描伏安法设计并研究了化学银自下而上填充工艺。结果表明,聚乙二醇4000 (PEG 4000)的加入对电极反应有良好的抑制作用。实验表明,peg4000对化学镀银有较强的抑制作用。当PEG 4000浓度为1.0 mg/L时,化学镀银速率由5.7 μm/h下降到2.3 μm/h。在化学镀液中加入PEG 4000,实现了不同尺寸沟槽的自底向上银填充。电沟分析表明,不同宽度的微电沟均被化学镀银完全填充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surface Engineering and Applied Electrochemistry
Surface Engineering and Applied Electrochemistry Engineering-Industrial and Manufacturing Engineering
CiteScore
1.60
自引率
22.20%
发文量
54
期刊介绍: Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.
期刊最新文献
Calculation of the Main Averaged Characteristics of the Drift of Lone Electrons in a Metal Conductor with a Conduction Current Autonomous Devices with an Evaporation–Condensation Cycle for Thermal Control of Heat-Loaded Equipment Experimental Method and Software Instruments for Sliding Tribosystem Dynamic Behavior Research Investigating Ultrasonically Assisted CdxCryFe3 – (x + y)O4 for Its Electrochemical Efficacy towards Water Electrolysis, Ethanol and Methanol Oxidation The Effect of Preparation Conditions on the Characteristics of Anodized Copper Oxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1