Sulfur/nitrogen/oxygen tri-doped carbon nanospheres as an anode for potassium ion storage

IF 14.9 1区 化学 Q1 Energy Journal of Energy Chemistry Pub Date : 2023-02-01 DOI:10.1016/j.jechem.2022.10.042
Xiaoyan Chen , Wang Zhou , Jilei Liu , Yingpeng Wu , Zhigang Liu
{"title":"Sulfur/nitrogen/oxygen tri-doped carbon nanospheres as an anode for potassium ion storage","authors":"Xiaoyan Chen ,&nbsp;Wang Zhou ,&nbsp;Jilei Liu ,&nbsp;Yingpeng Wu ,&nbsp;Zhigang Liu","doi":"10.1016/j.jechem.2022.10.042","DOIUrl":null,"url":null,"abstract":"<div><p>Carbonaceous materials are considered as ideal anode for potassium ion batteries (PIBs) due to their abundant resources and stable physical and chemical properties. However, improvements of reversible capacity and cycle performance are still needed, aiming to the practical application. Herein, S/N/O tri-doped carbon (SNOC) nanospheres are prepared by in-situ vulcanized polybenzoxazine. The S/N/O tri-doped carbon matrix provides abundant active sites for potassium ion adsorption and effectively improves potassium storage capacity. Moreover, the SNOC nanospheres possess large carbon interlayer spacing and high specific surface area, which broaden the diffusion pathway of potassium ions and accelerate the electron transfer speed, resulting in excellent rate performance. As an anode for PIBs, SNOC shows attractive rate performance (438.5 mA h g<sup>−1</sup> at 50 mA g<sup>−1</sup> and 174.5 mA h g<sup>−1</sup> at 2000 mA g<sup>−1</sup>), ultra-high reversible capacity (397.4 mA h g<sup>−1</sup> at 100 mA g<sup>−1</sup> after 700 cycles) and ultra-long cycling life (218.9 mA h g<sup>−1</sup> at 2000 mA g<sup>−1</sup> after 7300 cycles, 123.1 mA h g<sup>−1</sup> at 3000 mA g<sup>−1</sup> after 16500 cycles and full cell runs for 4000 cycles). Density functional theory calculation confirms that S/N/O tri-doping enhances the adsorption and diffusion of potassium ions, and in-situ Fourier-transform infrared explores explored the potassium storage mechanism of SNOC.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"77 ","pages":"Pages 338-347"},"PeriodicalIF":14.9000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495622005824","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 4

Abstract

Carbonaceous materials are considered as ideal anode for potassium ion batteries (PIBs) due to their abundant resources and stable physical and chemical properties. However, improvements of reversible capacity and cycle performance are still needed, aiming to the practical application. Herein, S/N/O tri-doped carbon (SNOC) nanospheres are prepared by in-situ vulcanized polybenzoxazine. The S/N/O tri-doped carbon matrix provides abundant active sites for potassium ion adsorption and effectively improves potassium storage capacity. Moreover, the SNOC nanospheres possess large carbon interlayer spacing and high specific surface area, which broaden the diffusion pathway of potassium ions and accelerate the electron transfer speed, resulting in excellent rate performance. As an anode for PIBs, SNOC shows attractive rate performance (438.5 mA h g−1 at 50 mA g−1 and 174.5 mA h g−1 at 2000 mA g−1), ultra-high reversible capacity (397.4 mA h g−1 at 100 mA g−1 after 700 cycles) and ultra-long cycling life (218.9 mA h g−1 at 2000 mA g−1 after 7300 cycles, 123.1 mA h g−1 at 3000 mA g−1 after 16500 cycles and full cell runs for 4000 cycles). Density functional theory calculation confirms that S/N/O tri-doping enhances the adsorption and diffusion of potassium ions, and in-situ Fourier-transform infrared explores explored the potassium storage mechanism of SNOC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硫/氮/氧三掺杂碳纳米球作为钾离子存储阳极
碳质材料由于其丰富的资源和稳定的物理化学性质,被认为是钾离子电池(PIBs)的理想阳极。然而,针对实际应用,仍需要提高可逆容量和循环性能。本文通过原位硫化聚苯并恶嗪制备了S/N/O三掺杂碳(SNOC)纳米球。S/N/O三掺杂碳基体为钾离子吸附提供了丰富的活性位点,有效提高了储钾能力。此外,SNOC纳米球具有大的碳层间距和高比表面积,拓宽了钾离子的扩散途径,加快了电子转移速度,具有优异的倍率性能。作为PIB的阳极,SNOC显示出有吸引力的速率性能(50 mA g−1时为438.5 mA h g−1,2000 mA g−2时为174.5 mA h h g−),超高可逆容量(700次循环后100 mA g−1时为397.4 mA h g−1)和超长循环寿命(7300次循环后2000 mA g−2时为218.9 mA h g–1,16500次循环和4000次全电池运行后3000 mA g−3时为123.1 mA h g-1)。密度泛函理论计算证实了S/N/O三掺杂增强了钾离子的吸附和扩散,原位傅立叶变换红外探索了SNOC的储钾机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
期刊最新文献
Electrode heterogeneous modeling and cross-scale analysis under multi-physics coupling: Microstructure-dependent mechanism for nonlinear degradation Sustainable biopolymer hydrogel electrolytes for electrochromics: Materials, mechanisms, and roadmaps to next-generation smart technologies Layer-dependent ammonia activation on VOx/Cu inverse catalysts Coupled reaction pathways and microenvironment engineering in IrOx/Nb2O5 for efficient water electrolysis Homogenizing bandgap distribution of Sb2(S,Se)3 absorber boosting the efficiency of solar cells to 10.83%
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1