Conductive Textiles for Signal Sensing and Technical Applications

Signals Pub Date : 2022-12-22 DOI:10.3390/signals4010001
Md. Golam Sarower Rayhan, M. K. H. Khan, Mahfuza Tahsin Shoily, Habibur Rahman, M. Rahman, Md. Tusar Akon, M. Hoque, Md Rayhan Khan, Tanvir Rayhan Rifat, Fahmida Akter Tisha, I. Sumon, Abdul Wahab Fahim, M. A. Uddin, A. Sayem
{"title":"Conductive Textiles for Signal Sensing and Technical Applications","authors":"Md. Golam Sarower Rayhan, M. K. H. Khan, Mahfuza Tahsin Shoily, Habibur Rahman, M. Rahman, Md. Tusar Akon, M. Hoque, Md Rayhan Khan, Tanvir Rayhan Rifat, Fahmida Akter Tisha, I. Sumon, Abdul Wahab Fahim, M. A. Uddin, A. Sayem","doi":"10.3390/signals4010001","DOIUrl":null,"url":null,"abstract":"Conductive textiles have found notable applications as electrodes and sensors capable of detecting biosignals like the electrocardiogram (ECG), electrogastrogram (EGG), electroencephalogram (EEG), and electromyogram (EMG), etc; other applications include electromagnetic shielding, supercapacitors, and soft robotics. There are several classes of materials that impart conductivity, including polymers, metals, and non-metals. The most significant materials are Polypyrrole (PPy), Polyaniline (PANI), Poly(3,4-ethylenedioxythiophene) (PEDOT), carbon, and metallic nanoparticles. The processes of making conductive textiles include various deposition methods, polymerization, coating, and printing. The parameters, such as conductivity and electromagnetic shielding, are prerequisites that set the benchmark for the performance of conductive textile materials. This review paper focuses on the raw materials that are used for conductive textiles, various approaches that impart conductivity, the fabrication of conductive materials, testing methods of electrical parameters, and key technical applications, challenges, and future potential.","PeriodicalId":93815,"journal":{"name":"Signals","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/signals4010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Conductive textiles have found notable applications as electrodes and sensors capable of detecting biosignals like the electrocardiogram (ECG), electrogastrogram (EGG), electroencephalogram (EEG), and electromyogram (EMG), etc; other applications include electromagnetic shielding, supercapacitors, and soft robotics. There are several classes of materials that impart conductivity, including polymers, metals, and non-metals. The most significant materials are Polypyrrole (PPy), Polyaniline (PANI), Poly(3,4-ethylenedioxythiophene) (PEDOT), carbon, and metallic nanoparticles. The processes of making conductive textiles include various deposition methods, polymerization, coating, and printing. The parameters, such as conductivity and electromagnetic shielding, are prerequisites that set the benchmark for the performance of conductive textile materials. This review paper focuses on the raw materials that are used for conductive textiles, various approaches that impart conductivity, the fabrication of conductive materials, testing methods of electrical parameters, and key technical applications, challenges, and future potential.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于信号传感和技术应用的导电纺织品
导电纺织品作为能够检测生物信号(如心电图(ECG)、胃电图(EGG)、脑电图(EEG)和肌电图(EMG)等)的电极和传感器已经得到了显著的应用;其他应用包括电磁屏蔽、超级电容器和软机器人。有几种类型的材料具有导电性,包括聚合物、金属和非金属。最重要的材料是聚吡咯(PPy)、聚苯胺(PANI)、聚(3,4-亚乙基二氧噻吩)(PEDOT)、碳和金属纳米颗粒。制造导电纺织品的工艺包括各种沉积方法、聚合、涂覆和印刷。导电性和电磁屏蔽等参数是为导电纺织材料的性能设定基准的先决条件。本文综述了导电纺织品的原材料、赋予导电性的各种方法、导电材料的制造、电气参数的测试方法以及关键技术应用、挑战和未来潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Detection of Movement and Lead-Popping Artifacts in Polysomnography EEG Data. Development of an Integrated System of sEMG Signal Acquisition, Processing, and Analysis with AI Techniques Correction: Martin et al. ApeTI: A Thermal Image Dataset for Face and Nose Segmentation with Apes. Signals 2024, 5, 147–164 On the Impulse Response of Singular Discrete LTI Systems and Three Fourier Transform Pairs Noncooperative Spectrum Sensing Strategy Based on Recurrence Quantification Analysis in the Context of the Cognitive Radio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1