{"title":"Microplastics and human health: Integrating pharmacokinetics","authors":"J. C. Prata","doi":"10.1080/10643389.2023.2195798","DOIUrl":null,"url":null,"abstract":"Abstract Microplastics are widespread contaminants leading to environmental exposure. While studies on the prevalence in human tissues have multiplied, little is known about their pharmacokinetics. Mechanisms of absorption, distribution, metabolism, and excretion (ADME) must be addressed before effects on human health (i.e. pharmacodynamics) can be understood. Therefore, the objective of this review was to provide an integrated assessment on the fate of microplastics in the human body by gathering information from multiple fields of research (e.g. implants and microspheres). Absorption of microplastics mainly occurs through transcytosis in enterocytes, while larger particles may be internalized through gaps (e.g. persorption) or by uptake by phagocytes. Only microplastics <5 µm may reach the alveolar region, while large particles found in the lungs usually result from entrapment of circulating particles in the narrow pulmonary capillary network. Overall, absorption rates of microplastics are expected to be low. Microplastics are then distributed by the circulatory system, accumulating in the respiratory system, digestive system, liver, spleen, and brain. Metabolism may lead to the biodegradation of microplastics, mainly through enzymes and reactive oxygen species of macrophages, exposure to physiologic fluids, and microbiologic activity in the gut lumen. Finally, most microplastics will be removed by the liver or spleen and excreted in the feces. While this work provides an initial attempt at constructing a pharmacokinetics model for microplastics, further research is required. Ideally, future works should be conducted using histopathology techniques to obtain the precise location in the tissues and radiolabelled particles to allow tracking through time. Graphical Abstract","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"53 1","pages":"1489 - 1511"},"PeriodicalIF":11.4000,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10643389.2023.2195798","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 8
Abstract
Abstract Microplastics are widespread contaminants leading to environmental exposure. While studies on the prevalence in human tissues have multiplied, little is known about their pharmacokinetics. Mechanisms of absorption, distribution, metabolism, and excretion (ADME) must be addressed before effects on human health (i.e. pharmacodynamics) can be understood. Therefore, the objective of this review was to provide an integrated assessment on the fate of microplastics in the human body by gathering information from multiple fields of research (e.g. implants and microspheres). Absorption of microplastics mainly occurs through transcytosis in enterocytes, while larger particles may be internalized through gaps (e.g. persorption) or by uptake by phagocytes. Only microplastics <5 µm may reach the alveolar region, while large particles found in the lungs usually result from entrapment of circulating particles in the narrow pulmonary capillary network. Overall, absorption rates of microplastics are expected to be low. Microplastics are then distributed by the circulatory system, accumulating in the respiratory system, digestive system, liver, spleen, and brain. Metabolism may lead to the biodegradation of microplastics, mainly through enzymes and reactive oxygen species of macrophages, exposure to physiologic fluids, and microbiologic activity in the gut lumen. Finally, most microplastics will be removed by the liver or spleen and excreted in the feces. While this work provides an initial attempt at constructing a pharmacokinetics model for microplastics, further research is required. Ideally, future works should be conducted using histopathology techniques to obtain the precise location in the tissues and radiolabelled particles to allow tracking through time. Graphical Abstract
期刊介绍:
Two of the most pressing global challenges of our era involve understanding and addressing the multitude of environmental problems we face. In order to tackle them effectively, it is essential to devise logical strategies and methods for their control. Critical Reviews in Environmental Science and Technology serves as a valuable international platform for the comprehensive assessment of current knowledge across a wide range of environmental science topics.
Environmental science is a field that encompasses the intricate and fluid interactions between various scientific disciplines. These include earth and agricultural sciences, chemistry, biology, medicine, and engineering. Furthermore, new disciplines such as environmental toxicology and risk assessment have emerged in response to the increasing complexity of environmental challenges.
The purpose of Critical Reviews in Environmental Science and Technology is to provide a space for critical analysis and evaluation of existing knowledge in environmental science. By doing so, it encourages the advancement of our understanding and the development of effective solutions. This journal plays a crucial role in fostering international cooperation and collaboration in addressing the pressing environmental issues of our time.