{"title":"Temperature-Responsive Covalent Organic Framework-Encapsulated Carbon Dot-Based Sensing Platform for Pyrethroid Detection via Fluorescence Response and Smartphone Readout","authors":"Ying Zhang, Xuecheng Zhu, Mingjian Li, Huilin Liu* and Baoguo Sun, ","doi":"10.1021/acs.jafc.2c01568","DOIUrl":null,"url":null,"abstract":"<p >In this paper, carbon dot (CD)-encapsulated 1,3,5-tris(4-formylphenyl)benzene (TFB)/2,5-dihydroxyterephthalohydrazide (DHTH) covalent organic frameworks (TDCOFs) grafted with thermoresponsive poly(<i>N</i>-isopropylacrylamide) (PNIPAM) (CDs@TDCOFs@PNIPAM) were fabricated for the detection of pyrethroids. CDs@TDCOFs@PNIPAM achieved a temperature-responsive “on/off” detection of pyrethroids based on the target-triggered electron-transfer mechanism. The detection limit of pyrethroids was as low as 0.69 μg/L in the wide linear range of 5–400 μg/L (<i>R</i><sup>2</sup> > 0.9523). Simultaneously, CDs@TDCOFs@PNIPAM with red, green, and blue (RGB) fluorescence emissions were integrated with a smartphone-assisted device, enabling the visual smart quantitative detection of pyrethroids with a detection limit of 4.875 μg/L. Ultimately, agricultural products were chosen as actual samples to verify the applicability of both recognition modes, and the calculated recovery rate was 105.48–113.40%. Accordingly, CDs@TDCOFs@PNIPAM featuring temperature-responsive switching behavior and RGB fluorescence emission provided a promising analytical strategy for ensuring agricultural and food safety.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"70 20","pages":"6059–6071"},"PeriodicalIF":5.7000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jafc.2c01568","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 17
Abstract
In this paper, carbon dot (CD)-encapsulated 1,3,5-tris(4-formylphenyl)benzene (TFB)/2,5-dihydroxyterephthalohydrazide (DHTH) covalent organic frameworks (TDCOFs) grafted with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) (CDs@TDCOFs@PNIPAM) were fabricated for the detection of pyrethroids. CDs@TDCOFs@PNIPAM achieved a temperature-responsive “on/off” detection of pyrethroids based on the target-triggered electron-transfer mechanism. The detection limit of pyrethroids was as low as 0.69 μg/L in the wide linear range of 5–400 μg/L (R2 > 0.9523). Simultaneously, CDs@TDCOFs@PNIPAM with red, green, and blue (RGB) fluorescence emissions were integrated with a smartphone-assisted device, enabling the visual smart quantitative detection of pyrethroids with a detection limit of 4.875 μg/L. Ultimately, agricultural products were chosen as actual samples to verify the applicability of both recognition modes, and the calculated recovery rate was 105.48–113.40%. Accordingly, CDs@TDCOFs@PNIPAM featuring temperature-responsive switching behavior and RGB fluorescence emission provided a promising analytical strategy for ensuring agricultural and food safety.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.