Free-Space Unknown Thru Measurement Using Planar Offset Short for Material Characterization

IF 1.6 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of electromagnetic engineering and science Pub Date : 2022-09-30 DOI:10.26866/jees.2022.5.r.122
Jin-Seob Kang
{"title":"Free-Space Unknown Thru Measurement Using Planar Offset Short for Material Characterization","authors":"Jin-Seob Kang","doi":"10.26866/jees.2022.5.r.122","DOIUrl":null,"url":null,"abstract":"Material characterization requires the proper calibration of a material measurement system. This paper describes a free-space unknown thru measurement method using three independent planar metal offset shorts for calibrating a free-space material measurement system. This method is validated by comparing the measurement results with those of the TRL (thru-reflect-line) measurement method for two glass plates of 2.780 mm and 4.775 mm thickness in W-band (75–110 GHz). This can be an affordable and effective alternative to conventional free-space material measurement methods because the precision fabrication of a planar offset short is more feasible and inexpensive than building a precise positioning system in a free-space material measurement system. One can use this measurement method up to a high-frequency range that the fabrication accuracy of a planar offset short is acceptable.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electromagnetic engineering and science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26866/jees.2022.5.r.122","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

Abstract

Material characterization requires the proper calibration of a material measurement system. This paper describes a free-space unknown thru measurement method using three independent planar metal offset shorts for calibrating a free-space material measurement system. This method is validated by comparing the measurement results with those of the TRL (thru-reflect-line) measurement method for two glass plates of 2.780 mm and 4.775 mm thickness in W-band (75–110 GHz). This can be an affordable and effective alternative to conventional free-space material measurement methods because the precision fabrication of a planar offset short is more feasible and inexpensive than building a precise positioning system in a free-space material measurement system. One can use this measurement method up to a high-frequency range that the fabrication accuracy of a planar offset short is acceptable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自由空间未知通过测量使用平面偏移短材料表征
材料表征需要对材料测量系统进行适当的校准。本文介绍了一种利用三个独立平面金属偏置短管对自由空间材料测量系统进行标定的自由空间未知通径测量方法。通过对w波段(75 ~ 110 GHz)厚度分别为2.780 mm和4.775 mm的两块玻璃板进行TRL (through - reflectivity line)测量,验证了该方法的有效性。这可能是传统自由空间材料测量方法的一种经济有效的替代方法,因为平面偏移短的精密制造比在自由空间材料测量系统中建立精确定位系统更可行和便宜。在平面偏置短的制造精度可接受的高频范围内,可以使用这种测量方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of electromagnetic engineering and science
Journal of electromagnetic engineering and science ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.90
自引率
17.40%
发文量
82
审稿时长
10 weeks
期刊介绍: The Journal of Electromagnetic Engineering and Science (JEES) is an official English-language journal of the Korean Institute of Electromagnetic and Science (KIEES). This journal was launched in 2001 and has been published quarterly since 2003. It is currently registered with the National Research Foundation of Korea and also indexed in Scopus, CrossRef and EBSCO, DOI/Crossref, Google Scholar and Web of Science Core Collection as Emerging Sources Citation Index(ESCI) Journal. The objective of JEES is to publish academic as well as industrial research results and discoveries in electromagnetic engineering and science. The particular scope of the journal includes electromagnetic field theory and its applications: High frequency components, circuits, and systems, Antennas, smart phones, and radars, Electromagnetic wave environments, Relevant industrial developments.
期刊最新文献
FMCW Interference Waveform Estimation Based on Intentional Local Interference for Automotive Radars Four-Element Biodegradable Substrate-Integrated MIMO DRA with Radiation Diversity Efficient FDTD Simulation for the EM Analysis of Faraday Rotation in the Ionosphere Experimental Results of Magnetic Communication Using the Giant Magnetoimpedance Receiver in Underwater Environments A Separation Method for Electromagnetic Radiation Sources of the Same Frequency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1