{"title":"Ridge stochastic restricted estimators in semiparametric linear measurement error models","authors":"Hadi Emami","doi":"10.29252/JIRSS.17.2.9","DOIUrl":null,"url":null,"abstract":". In this article we consider the stochastic restricted ridge estimation in semiparametric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates is established. Also, necessary and su (cid:14) cient conditions, for the superiority of the proposed estimator over its counterpart, for selecting the ridge parameter k are obtained. A Monte Carlo simulation study is also performed to illustrate the finite sample performance of the proposed procedures. Finally theoretical results are applied to Egyptian pottery industry data set.","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/JIRSS.17.2.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
. In this article we consider the stochastic restricted ridge estimation in semiparametric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates is established. Also, necessary and su (cid:14) cient conditions, for the superiority of the proposed estimator over its counterpart, for selecting the ridge parameter k are obtained. A Monte Carlo simulation study is also performed to illustrate the finite sample performance of the proposed procedures. Finally theoretical results are applied to Egyptian pottery industry data set.