Ridge stochastic restricted estimators in semiparametric linear measurement error models

IF 0.1 Q4 STATISTICS & PROBABILITY JIRSS-Journal of the Iranian Statistical Society Pub Date : 2018-12-01 DOI:10.29252/JIRSS.17.2.9
Hadi Emami
{"title":"Ridge stochastic restricted estimators in semiparametric linear measurement error models","authors":"Hadi Emami","doi":"10.29252/JIRSS.17.2.9","DOIUrl":null,"url":null,"abstract":". In this article we consider the stochastic restricted ridge estimation in semiparametric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates is established. Also, necessary and su (cid:14) cient conditions, for the superiority of the proposed estimator over its counterpart, for selecting the ridge parameter k are obtained. A Monte Carlo simulation study is also performed to illustrate the finite sample performance of the proposed procedures. Finally theoretical results are applied to Egyptian pottery industry data set.","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/JIRSS.17.2.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

. In this article we consider the stochastic restricted ridge estimation in semiparametric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates is established. Also, necessary and su (cid:14) cient conditions, for the superiority of the proposed estimator over its counterpart, for selecting the ridge parameter k are obtained. A Monte Carlo simulation study is also performed to illustrate the finite sample performance of the proposed procedures. Finally theoretical results are applied to Egyptian pottery industry data set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半参数线性测量误差模型中的岭随机约束估计
在本文中,我们考虑了半参数线性模型中当协变量是带加性误差测量时的随机限制岭估计。该模型中惩罚校正似然法的发展是岭估计推导的基础。建立了所得估计的渐近正态性。此外,还获得了所提出的估计器优于其对应估计器的选择岭参数k的必要条件和su(cid:14)充分条件。还进行了蒙特卡洛模拟研究,以说明所提出程序的有限样本性能。最后将理论结果应用于埃及陶器工业数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
期刊最新文献
Random Projection-Based Anderson-Darling Test for Random Fields Time Series Modeling of Coronavirus (COVID-19) Spread in Iran A Comparative Study of Some Clustering Algorithms on Shape Data A Discrete Kumaraswamy Marshall-Olkin Exponential Distribution Preservation of Stochastic Orderings of Interdependent Series and Parallel Systems by Componentwise Switching to Exponentiated Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1