One-Point and Multiline Calibration Fiber-Optic Laser-Ablation Spark-Induced Breakdown Spectroscopy for Quantitative Analysis of Elements in Aluminum Alloys
{"title":"One-Point and Multiline Calibration Fiber-Optic Laser-Ablation Spark-Induced Breakdown Spectroscopy for Quantitative Analysis of Elements in Aluminum Alloys","authors":"Yipeng Liao, Xiaoyong He, Xi Wu","doi":"10.1155/2023/2562588","DOIUrl":null,"url":null,"abstract":"Rapid and accurate analysis of element concentrations in aluminum alloys is crucial due to their widespread use in modern industry. This paper proposes a one-point and multiline calibration fiber-optic laser-ablation spark-induced breakdown spectroscopy (OP-MLC FO-LA-SIBS) for the quantitative analysis of elements in aluminum alloys. The experimental system utilizes a compact fiber laser as the laser-ablation source and spark discharge to enhance the atomic emission. A portable multichannel fiber spectrometer is used to quickly collect spectra in the nongated mode. The concentrations of four elements (Mg, Cr, Cu, and Mn) in four aluminum alloy samples were calculated using the simple and efficient OP-MLC method, which involves taking another sample with a similar matrix as the standard sample. The average relative errors (AREs) for Mg, Cr, Cu, and Mn were 6.38%, 28.09%, 21.92%, and 18.97%, respectively. When the certified concentrations are greater than 0.02 wt.%, the ARE is only 13.04%. The OP-MLC FO-LA-SIBS system is compact, features simple spectra processing, and offers effective measurement, providing a convenient method for rapid and efficient quantitative analysis of elements in aluminum alloys in industrial production.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/2562588","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid and accurate analysis of element concentrations in aluminum alloys is crucial due to their widespread use in modern industry. This paper proposes a one-point and multiline calibration fiber-optic laser-ablation spark-induced breakdown spectroscopy (OP-MLC FO-LA-SIBS) for the quantitative analysis of elements in aluminum alloys. The experimental system utilizes a compact fiber laser as the laser-ablation source and spark discharge to enhance the atomic emission. A portable multichannel fiber spectrometer is used to quickly collect spectra in the nongated mode. The concentrations of four elements (Mg, Cr, Cu, and Mn) in four aluminum alloy samples were calculated using the simple and efficient OP-MLC method, which involves taking another sample with a similar matrix as the standard sample. The average relative errors (AREs) for Mg, Cr, Cu, and Mn were 6.38%, 28.09%, 21.92%, and 18.97%, respectively. When the certified concentrations are greater than 0.02 wt.%, the ARE is only 13.04%. The OP-MLC FO-LA-SIBS system is compact, features simple spectra processing, and offers effective measurement, providing a convenient method for rapid and efficient quantitative analysis of elements in aluminum alloys in industrial production.
期刊介绍:
International Journal of Optics publishes papers on the nature of light, its properties and behaviours, and its interaction with matter. The journal considers both fundamental and highly applied studies, especially those that promise technological solutions for the next generation of systems and devices. As well as original research, International Journal of Optics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.