The Space Conceptual Models and Water Vapor Characteristics of Typical Rainstorms during Plum Rain Season

IF 2.1 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Advances in Meteorology Pub Date : 2022-09-26 DOI:10.1155/2022/6971110
Ying Tian, Rong Yao, Enrong Zhao, Qiangqiang Yao, Xiaolong Pan
{"title":"The Space Conceptual Models and Water Vapor Characteristics of Typical Rainstorms during Plum Rain Season","authors":"Ying Tian, Rong Yao, Enrong Zhao, Qiangqiang Yao, Xiaolong Pan","doi":"10.1155/2022/6971110","DOIUrl":null,"url":null,"abstract":"Based on conventional observation data from the China Meteorological Administration (CMA) and reanalysis data from the American National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) between 2012 and 2021, combined with the meteorological analysis, composite synthesis, and water vapor trajectory analysis, the weather circulations of typical rainstorms during the 10 years can be divided into 4 categories: Static Front Pattern (SFP), Subtropical High Edge Pattern (SHEP), Northeast Cold Vortex Pattern (NCVP), and Low-Level Vortex and Shear Pattern (LLVSP). The SHEP and SFP rainstorms have the characteristics of long duration and wide range, while the NCVP rainstorms are characterized by mobility and disaster weather accompaniment. The daily precipitation of LLVSP cases has extremity feature. The occurrence and development of rainstorms are well coordinated with the systems on lower levels. The main water vapor channel in lower layers of the SFP cases is from the South China Sea, while it is from Bohai for the NCVP cases and the Bay of Bengal for the SHEP and LLVSP cases. The main water vapor channel in middle layers is from the Bay of Bengal because of the affection of the southwest air flow. The south boundary of the MLYRB is the most important water vapor input boundary, followed by the west boundary, while the East and North boundaries are the outflow boundaries. During the rainstorms, the low-level water vapor is exuberant with low-level water vapor convergence much stronger than the high-level divergence. Among the four types of rainstorms, the NCVP cases provide the most abundant low-level water vapor convergence, resulting in the strongest short-term precipitation among the four types. Combined with water vapor transportation and convergence, the refined spatial conceptual models of the four types of rainstorms can better judge the process intensity and falling area and provide reference for disastrous weather forecast and early warning.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1155/2022/6971110","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

Based on conventional observation data from the China Meteorological Administration (CMA) and reanalysis data from the American National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) between 2012 and 2021, combined with the meteorological analysis, composite synthesis, and water vapor trajectory analysis, the weather circulations of typical rainstorms during the 10 years can be divided into 4 categories: Static Front Pattern (SFP), Subtropical High Edge Pattern (SHEP), Northeast Cold Vortex Pattern (NCVP), and Low-Level Vortex and Shear Pattern (LLVSP). The SHEP and SFP rainstorms have the characteristics of long duration and wide range, while the NCVP rainstorms are characterized by mobility and disaster weather accompaniment. The daily precipitation of LLVSP cases has extremity feature. The occurrence and development of rainstorms are well coordinated with the systems on lower levels. The main water vapor channel in lower layers of the SFP cases is from the South China Sea, while it is from Bohai for the NCVP cases and the Bay of Bengal for the SHEP and LLVSP cases. The main water vapor channel in middle layers is from the Bay of Bengal because of the affection of the southwest air flow. The south boundary of the MLYRB is the most important water vapor input boundary, followed by the west boundary, while the East and North boundaries are the outflow boundaries. During the rainstorms, the low-level water vapor is exuberant with low-level water vapor convergence much stronger than the high-level divergence. Among the four types of rainstorms, the NCVP cases provide the most abundant low-level water vapor convergence, resulting in the strongest short-term precipitation among the four types. Combined with water vapor transportation and convergence, the refined spatial conceptual models of the four types of rainstorms can better judge the process intensity and falling area and provide reference for disastrous weather forecast and early warning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
梅雨季节典型暴雨的空间概念模式及水汽特征
基于中国气象局2012 - 2021年常规观测资料和美国国家环境预报中心和国家大气研究中心(NCEP/NCAR)的再分析资料,结合气象分析、综合合成和水汽轨迹分析,将10 a典型暴雨天气环流分为4类:静态锋型(SFP)、副热带高压边缘型(SHEP)、东北冷涡型(NCVP)和低层涡切变型(LLVSP)。SHEP和SFP暴雨具有持续时间长、范围广的特点,NCVP暴雨具有机动性和灾害性天气伴生的特点。LLVSP病例的日降水量具有极端特征。暴雨的发生和发展与低层系统协调良好。SFP事件低层水汽通道主要来自南海,NCVP事件低层水汽通道主要来自渤海,SHEP和LLVSP事件低层水汽通道主要来自孟加拉湾。受西南气流影响,中层水汽通道主要来自孟加拉湾。MLYRB的南边界是最重要的水汽输入边界,其次是西边界,而东边界和北边界是流出边界。暴雨过程中,低层水汽充沛,低层水汽辐合远强于高层辐散。在4种暴雨类型中,NCVP提供的低层水汽辐合最丰富,造成的短期降水是4种类型中最强的。结合水汽输送和辐合,精细化的四类暴雨空间概念模型可以更好地判断过程强度和落区,为灾害性天气预报和预警提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Meteorology
Advances in Meteorology 地学天文-气象与大气科学
CiteScore
5.30
自引率
3.40%
发文量
80
审稿时长
>12 weeks
期刊介绍: Advances in Meteorology is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of meteorology and climatology. Topics covered include, but are not limited to, forecasting techniques and applications, meteorological modeling, data analysis, atmospheric chemistry and physics, climate change, satellite meteorology, marine meteorology, and forest meteorology.
期刊最新文献
Sensitivity of WRF-Simulated 2 m Temperature and Precipitation to Physics Options over the Loess Plateau Analysis of Urban Heat Island Effect in Wuhan Urban Area Based on Prediction of Urban Underlying Surface Coverage Type Change Temporal Dynamics and Trend Analysis of Areal Rainfall in Muger Subwatershed, Upper Blue Nile, Ethiopia Statistical Analysis for the Detection of Change Points and the Evaluation of Monthly Mean Temperature Trends of the Moulouya Basin (Morocco) Ultraviolet Radiation Quasi-Periodicities and Their Possible Link with the Cosmic Ray and Solar Interplanetary Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1