{"title":"Spatiotemporal Information Fusion Method of User and Social Media Activity","authors":"Chao Yang, Liu Yang, Kunlun Qi","doi":"10.32629/jai.v4i2.485","DOIUrl":null,"url":null,"abstract":"Social media check-in data contains a lot of user activity information. Understanding the types of activities and behavior of social media users has important research significance for exploring human mobility and behavior patterns. This paper studies the user activity classification method for Sina Weibo (a very popular Chinese social network service, referred to as “Weibo”), which combines image expression and spatiotemporal data classification technology to realize the identification of the activity behavior represented by the microblog check-in data. Firstly, the user activities represented by the Sina Weibo check-in data are divided into six categories according to POI attribute information: “catering”, “life services”, “campus”, “outdoors”, “entertainment” and “travel”; Then, through the Convolutional Neural Network (CNN) and K-Nearest Neighbor (KNN) classification methods, the image scene information and spatiotemporal information in the check-in data are fused to classify the activity behavior of microblog users. The experimental results show that the proposed method can significantly improve the accuracy of microblog user activity type recognition and provide more effective data support for accurately exploring human behavior activities.","PeriodicalId":70721,"journal":{"name":"自主智能(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.32629/jai.v4i2.485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Social media check-in data contains a lot of user activity information. Understanding the types of activities and behavior of social media users has important research significance for exploring human mobility and behavior patterns. This paper studies the user activity classification method for Sina Weibo (a very popular Chinese social network service, referred to as “Weibo”), which combines image expression and spatiotemporal data classification technology to realize the identification of the activity behavior represented by the microblog check-in data. Firstly, the user activities represented by the Sina Weibo check-in data are divided into six categories according to POI attribute information: “catering”, “life services”, “campus”, “outdoors”, “entertainment” and “travel”; Then, through the Convolutional Neural Network (CNN) and K-Nearest Neighbor (KNN) classification methods, the image scene information and spatiotemporal information in the check-in data are fused to classify the activity behavior of microblog users. The experimental results show that the proposed method can significantly improve the accuracy of microblog user activity type recognition and provide more effective data support for accurately exploring human behavior activities.