Novel scientific design of hybrid opposition based—Chaotic little golden-mantled flying fox, White-winged chough search optimization algorithm for real power loss reduction and voltage stability expansion
{"title":"Novel scientific design of hybrid opposition based—Chaotic little golden-mantled flying fox, White-winged chough search optimization algorithm for real power loss reduction and voltage stability expansion","authors":"L. Kanagasabai","doi":"10.32629/jai.v6i3.680","DOIUrl":null,"url":null,"abstract":"In this paper hybrid opposition based—Chaotic little golden-mantled flying fox algorithm and White-winged chough search optimization algorithm (HLFWC) is applied to solve the loss dwindling problem. Key objective of the paper is real power loss reduction, voltage deviation minimization and voltage stability expansion. Proposed little golden-mantled flying fox algorithm is designed based on the deeds of the little golden-mantled flying fox. Maximum classes have single progenies at a period afterwards of prenatal period. This little procreative production means that when populace forfeiture their figures are deliberate to ricochet. In White-winged chough search optimization algorithm magnifying the encumbrance element in a definite assortment will pointedly enlarge the exploration region. In a coiled exploration, the position of any White-winged chough can differ in numerous scopes to cover the exploration region, predominantly in the projected problem. Hybrid opposition based—Chaotic little golden-mantled flying fox algorithm and White-winged chough search optimization algorithm (HLFWC) is accomplished by integrating the actions of little golden-mantled flying fox and White-winged chough. Through the hybridization of both algorithms exploration and exploitation has been balanced throughout the procedure. Proposed hybrid opposition based—Chaotic little golden-mantled flying fox algorithm and White-winged chough search optimization algorithm (HLFWC) is corroborated in IEEE 30 and 57 systems. From the simulation results it has been observed that real power loss reduction, voltage deviation minimization and voltage stability expansion has been achieved.","PeriodicalId":70721,"journal":{"name":"自主智能(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.32629/jai.v6i3.680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper hybrid opposition based—Chaotic little golden-mantled flying fox algorithm and White-winged chough search optimization algorithm (HLFWC) is applied to solve the loss dwindling problem. Key objective of the paper is real power loss reduction, voltage deviation minimization and voltage stability expansion. Proposed little golden-mantled flying fox algorithm is designed based on the deeds of the little golden-mantled flying fox. Maximum classes have single progenies at a period afterwards of prenatal period. This little procreative production means that when populace forfeiture their figures are deliberate to ricochet. In White-winged chough search optimization algorithm magnifying the encumbrance element in a definite assortment will pointedly enlarge the exploration region. In a coiled exploration, the position of any White-winged chough can differ in numerous scopes to cover the exploration region, predominantly in the projected problem. Hybrid opposition based—Chaotic little golden-mantled flying fox algorithm and White-winged chough search optimization algorithm (HLFWC) is accomplished by integrating the actions of little golden-mantled flying fox and White-winged chough. Through the hybridization of both algorithms exploration and exploitation has been balanced throughout the procedure. Proposed hybrid opposition based—Chaotic little golden-mantled flying fox algorithm and White-winged chough search optimization algorithm (HLFWC) is corroborated in IEEE 30 and 57 systems. From the simulation results it has been observed that real power loss reduction, voltage deviation minimization and voltage stability expansion has been achieved.