{"title":"Single atom catalysts for heterogeneous catalytic ozonation","authors":"Yizhen Cheng , Zhonglin Chen , Shaobin Wang , Xiaoguang Duan","doi":"10.1016/j.coche.2023.100945","DOIUrl":null,"url":null,"abstract":"<div><p>Single atom catalysts (SACs) have received soaring interest in environmental applications due to their ultrahigh atomic efficiency and drastically reduced metal loading. In this review, we summarized the preliminary efforts in applying SACs for heterogeneous catalytic ozonation (HCO). Mechanistic analyses revealed a creditable consensus that highly dispersed active single atoms can accelerate the decomposition of ozone (O<sub>3</sub>) into surface-adsorbed *O and free O<sub>2</sub>. However, the activity of SAC toward O<sub>3</sub> decomposition varies, depending on the central metal species and coordination environment. In this review, we discussed the synthesis and characterization of SACs, emphasizing their application and catalytic regimes in HCO. Also, limitations and prospects of SAC-based HCO were proposed to shed light on future studies.</p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"41 ","pages":"Article 100945"},"PeriodicalIF":8.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211339823000497/pdfft?md5=6dde1b4afe306d2b8b0fdc576cc8b755&pid=1-s2.0-S2211339823000497-main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339823000497","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Single atom catalysts (SACs) have received soaring interest in environmental applications due to their ultrahigh atomic efficiency and drastically reduced metal loading. In this review, we summarized the preliminary efforts in applying SACs for heterogeneous catalytic ozonation (HCO). Mechanistic analyses revealed a creditable consensus that highly dispersed active single atoms can accelerate the decomposition of ozone (O3) into surface-adsorbed *O and free O2. However, the activity of SAC toward O3 decomposition varies, depending on the central metal species and coordination environment. In this review, we discussed the synthesis and characterization of SACs, emphasizing their application and catalytic regimes in HCO. Also, limitations and prospects of SAC-based HCO were proposed to shed light on future studies.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.