C. Wen, Qianwen Zhang, K. Qi, Zhenyu Chen, Y. Qiu, X. Guo
{"title":"Effect of heat flux on metal corrosion in non-boiling media: testing system, heat transfer simulations, and corrosion study on Al alloy","authors":"C. Wen, Qianwen Zhang, K. Qi, Zhenyu Chen, Y. Qiu, X. Guo","doi":"10.1080/1478422X.2022.2126084","DOIUrl":null,"url":null,"abstract":"ABSTRACT A dual-circulation testing system was constructed to study the effect of heat flux density (q, −22.28 ∼ +22.54 kW m-2) on the corrosion of an Al–Cu–Mg–Mn alloy in 0.5 M H2SO4 at a constant metal surface temperature (50°C) under different controlling heat transfer states. Their heat transfer parameters were determined quantitatively by COMSOL simulation to keep them except q in constant, highlighting the influence of q on metal corrosion. Compared with the q = 0 condition, the positive heat flux (q > 0) improved the surface layer performance of the Al alloy to inhibit its anodic corrosion process, decreasing its corrosion current density (i corr) by 56% with increasing q to 22.54 kW m-2. While q < 0, the opposite effect occurred, increasing its i corr by 52% at q = −22.28 kW m-2. Heat flux also changed the corrosion reaction’s apparent effective activation energy (E a) and pre-factor, and E a played a dominating role in changing i corr.","PeriodicalId":10711,"journal":{"name":"Corrosion Engineering, Science and Technology","volume":"57 1","pages":"749 - 761"},"PeriodicalIF":1.5000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Engineering, Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/1478422X.2022.2126084","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT A dual-circulation testing system was constructed to study the effect of heat flux density (q, −22.28 ∼ +22.54 kW m-2) on the corrosion of an Al–Cu–Mg–Mn alloy in 0.5 M H2SO4 at a constant metal surface temperature (50°C) under different controlling heat transfer states. Their heat transfer parameters were determined quantitatively by COMSOL simulation to keep them except q in constant, highlighting the influence of q on metal corrosion. Compared with the q = 0 condition, the positive heat flux (q > 0) improved the surface layer performance of the Al alloy to inhibit its anodic corrosion process, decreasing its corrosion current density (i corr) by 56% with increasing q to 22.54 kW m-2. While q < 0, the opposite effect occurred, increasing its i corr by 52% at q = −22.28 kW m-2. Heat flux also changed the corrosion reaction’s apparent effective activation energy (E a) and pre-factor, and E a played a dominating role in changing i corr.
期刊介绍:
Corrosion Engineering, Science and Technology provides broad international coverage of research and practice in corrosion processes and corrosion control. Peer-reviewed contributions address all aspects of corrosion engineering and corrosion science; there is strong emphasis on effective design and materials selection to combat corrosion and the journal carries failure case studies to further knowledge in these areas.